Лаборатория космических исследований

Ульяновская секция Поволжского отделения Российской Академии Космонавтики им. К. Э. Циолковского

Ульяновский Государственный Университет
Последние комментарии
  • Что сильнее притягивает Луну: Земля или Солнце?   5 лет 31 неделя назад

    На сайте сделаны небольшие изменения. В некоторых материалах убрана строка Закреплять вверху списков. Из-за этого изменился порядок расположения материалов, но все они остались на главных страницах, которых, правда, набралось уже 118. Материалы упорядочены по дате выставления на сайт на главных страницах, а также в разделе Проекты и Знание- Сила.

    Статьи, к которым написаны комментарии в настоящее время, наоборот, выставлены выше других на первое место на главной странице.

    Приятно удивило, что материал RMR_astra  Что сильнее притягивает Луну: Земля или Солнце?, написанный несколько лет назад, привлек внимание и свежий взгляд нового участника сайта Георгия.  Видимо, данная информация заинтересовала многих, если число просмотров оказалось свыше 45 тысяч.

  • Георгий: Всем привет от инженера-механика по динамике полёта и системам управления Летательных Аппаратов   5 лет 31 неделя назад

    О космическом аппарате Спектр РГ

    Уважаемый Георгий! Большое спасибо за интересное и доступное объяснение трудных тем.

    На заданные Вами вопросы частично могут ответить две небольшие статьи на нашем сайте, в которых есть ссылки на более подробные материалы, но думаю, что на все  вопросы ответы найти не удастся, хоть статей о КА Спектр РГ в интернете довольно много.

  • Георгий: Всем привет от инженера-механика по динамике полёта и системам управления Летательных Аппаратов   5 лет 31 неделя назад

    Уважаемая RMR_astra, спасибо за ответ.

       В свою очередь хочу узнать: каково же на самом деле расстояние для КА Спектр РГ, которое стремятся поддерживать за счёт коррекций. Неужели оно близко к радиусу "сферы Хилла" или всё-таки подальше до 2-3 млн.км.  Прочитал про долгие годы переносов запуска КА. Как я понял, это зеркальный телескоп, созданный в Европе, схемы Ньютона, а может быть даже Максутова с передней линзой для герметичности от космической пыли.  Когда-то в школьные годы сделал себе из двух положительных очковых линз 1,0  и 20 диоптрий зрительную трубу с перевёрнутым изображением. А мы, наверное, как в последнее время, в роли извозчика, или хотя бы разработали для него двигатель и систему управления ориентацией.   И кто на себя взял роль управления коррекциями, надеюсь, что наши специалисты.  НЕ запомнил диаметр зеркала, видимо приличный, около метра.  Интересно на сколько лет рассчитана его миссия в т.L2. и каков запас топлива на борту и какова его судьба после исчерпания запаса топлива на борту и выведут ли его после этого на спутниковую орбиту или утопят в океане. И что надеются открыть нового с этим КА. 

       P.S. почему-то оказалось заблокированной возможность окорректировать мой предыдущий ответ Вам от 9.01.2020 с описанием либрационных точек, т.е. НЕТ кнопки "изменить", а захотелось немного добавить текста и убрать синтаксические ошибки. В чём дело?

    Кстати, нашёл ещё интересную статью по точкам Лагранжа, вот её начало:

    https://yandex.ru/turbo?text=https%3A%2F%2Fhightech.fm%2F2019%2F05%2F22%2Flagrange-point

    "Полет в точку Лагранжа: как устроены самые странные места в Солнечной системе, где практически не работает гравитация       Святослав Иванов, 22 мая 2019

    Что такое точка Лагранжа?

    В 1772 году математик Жозу Луи Лагранж вычислил в своем исследовании «Проблема трех тел», что гравитационное поле Земли должно нейтрализовать гравитационное притяжение самого большого объекта в Солнечной системе — Солнца — в пяти областях пространства. По сути, эти пять точек являются единственными местами в нашей системе, где практически не работает гравитация благодаря одинаковой силе притяжения от нескольких космических тел.

     пять точек Лагранжа — L1, L2, L3, L4 и L5. Для ученых наиболее интересными для изучения являются точки L4 и L5 — единственные стабильные области из всех точек Лагранжа. Если спутник попадет в точки L1 или L2, через несколько месяцев орбиты изменятся и область отсутствия гравитации также сместится, поэтому космическому телу придется совершать различные маневры, чтобы оставаться в этой области.

    Точки L4 и L5, которые считаются самыми стабильными, расположены на плоскости земной орбиты на расстоянии 150 млн км от нашей планеты (для сравнения, расстояние от Земли до Луны составляет 383,4 тыс. км, среднее расстояние до Венеры — от 38 до 250 млн км в зависимости от местоположения планет). При этом L4 вращается вокруг Солнца на 60° впереди Земли, а L5 — на 60° позади.

    Вокруг других планет в Солнечной системе ученые также наблюдают похожие области. В 1906 году астроном и пионер астрофотографии Максимилиан Вольф обнаружил астероид, который находится постоянно в одном и том же месте за главным поясом астероидов между орбитами Марса и Юпитера.

    Этот астероид оказался точкой L4 Юпитера. Ученые назвали его Ахиллесом — именно с него пошла традиция называть все подобные астероиды именами участников Троянской войны. Сейчас благодаря этому открытию астрофизики обнаружили более тысячи астероидов, находящихся в двух стабильных точках Лагранжа Юпитера.

    ....

    Точка Лагранжа — это такое место в космосе, где объединенные гравитационные силы двух очень массивных тел — Земли и Солнца или Земли и Луны — равны центробежной силе, ощущаемой намного меньшим третьим телом. Взаимодействие этих сил создает точку равновесия, где может быть навечно «припаркован» условный космический корабль для проведения наблюдений."

    ===============

    Обратите внимание на неграмотный заголовок:  "где практически не работает гравитация". 

    Опять вспомнил про неудачные названия "сфера притяжения"  и "сфера влияния". Можно подумать, что есть такие места , куда не дотянется "длинная" рука гравитации от любой планеты Солнечной системы в виде гравитационных возмущений. А в первом абзаце автор даже не понимает, что устойчивость в точках L4 и L5 без учёта Бар-центра   НЕВОЗМОЖНО НИЧЕМ ОБЪЯСНИТЬ, т.к. ничто не мешает притянуть Земле к себе оба тела L4 и L5, если не привлечь эффекты от учёта влияния бар-центра, эффект действия от которого я пока и сам ещё не понял и пора начать разобираться с  точками L3-L5.

    Кстати, на цветном рисунке с точками L1-L5  для L2 допущена грубая ошибка: там  НЕ ДОЛЖНО БЫТЬ правого синего треугольника, направленного от Земли вправо, как будто  тело кем-то притягивается вправо, поскольку там ПУСТОТА и НЕТ никаких тел, а оба тела и Земля и Солнце тянут ВЛЕВО!  Опять перемудрили с центробежной силой, думая, что скомпенсировали ею притяжение Земли! ОШИБКА.  Получилась  как бы такая же точка НЕУСТОЙЧИВОГО равновесия для L2, как и в L1 !  А вот для L1 нарисовано всё правильно: синие треугольники указывают направления ухода от положения неустойчивого равновесия в ОБЕ СТОРОНЫ, а вот в L2 должен быть ТОЛЬКО ОДИН или можно и ДВА синих треугольника, НО второй, правый, треугольник должен быть направлен  остриём ВЛЕВО  (а не вправо!) к Земле, куда и притягивается всё время тело L2!       Кстати,  и у L3 та же самая ошибка: левый синий треугольник  должен быть  направлен НЕ ВЛЕВО, А ВПРАВО!  Поскольку слева от точки L3 НЕТ НИКАКИХ гравитаторов и ускорение м.б. направлено ТОЛЬКО к Солнцу!  А может быть и в L4 и L5  тоже ошиблись и никакой учёт Бара не поможет?  

       А вот красные треугольники показывают на устойчивость по отношению к линии "Солнце-Земля", прижимая тела  L1 и L2 с двух сторон к линии "Солнце-Земля". Это совершенно правильно.

    Кстати вдруг заметил, что на  точки L1 и L2 с учётом их неустойчивого равновесия и даже отсутствия оного может неслабо повлиять Луна своими гравитационными возмущениями, особенно на точки L1 и L2 как наиболее близкие к Луне. 

        Решил обновить свои потускневшие от пыли времён знания по теоретической механике и полистал книгу М.А.Айзермана "Классическая механика", третье издание,от 2005г., написанную на полной теоретической базе преподавателем курса классической механики в МФТИ, одолженную вчера у моего внука, студента 3-го курса МФТИ, для озакомления. Книга мне понравилась и вызвала желание получше вникнуть в идеи инвариантности и ковариантности законов. К своему стыду, понял, что именно Лагранж вывел уравнения для расчёта движения тел в НЕИНЕРЦИАЛЬНЫХ системах координат со всем букетом новых ("фиктивных") ускорений от сил инерции, расширив область применения уравнений Ньютона из инерциальной системы координат в неинерцаальную, а не Д'Аламбер, принцип которого твёрдо отложился в памяти из курса теоретической механики технического ВУЗ-а с институтских лет.  Как написано в аннотации  к этой книге, "она базируется на основных понятиях механики, так и обосновании лагранжева и гамильтонова ФОРМАЛИЗМА" Это, косвенно оправдывает, часто применяемый мною из-за многочисленных ошибок при применении понятия центробежных ускорений там,  где их вообще нет и в помине, термин О ФИКТИВНОСТИ СИЛ ИНЕРЦИИ, появляющихся ТОЛЬКО в НЕИНЕРЦИАЛЬНЫХ системах координат  (почерпнутый мною из ранее упомянутой книги А.Ю. Ишлинского). 

    P.S.    Так что, за все, возможные,  ошибки на вышеприведенном цветном рисунке для "сферы Хилла"  надо "благодарить" современных инерпретаторов уравнений Лагранжа, не очень грамотно применяющих его уравнения. Хотелось бы узнать из первых рук, т.е.  от авторов этого рисунка с их синими треугольниками,  их оригинальные комментарии к нему по поводу точек L1-L5.    Придётся самому разбираться  с точками L3-L5 в любезных мне инерциальных простых системах, не позволяющих плутать в дебрях компенсаций центробежными ускорениями, хотя их добавление  в неинерциальных системах на представляет ровным счётом никаких трудностей, а носит чисто формальный характер. В "инерциалке" часто проще проводить объяснение формирования траекторий движения тел для начинающих и рассуждать ТОЛЬКО о реальных Ньтоновых силах гравитационного притяжения, действующих на тела, что бы не было в умах эклектической мешанины из реальных и фиктивных центробежных,  ускорений!

    Георгий. 11.01.2020 10ч58м. вр.моск.

  • Георгий: Всем привет от инженера-механика по динамике полёта и системам управления Летательных Аппаратов   5 лет 32 недели назад

    Уважаемый Георгий! Спасибо за поздравления и пожелания!

    Прежде всего, отправляю Вам мое старое письмо, которое по техническим причинам к Вам не попало:

       «Уважаемый Георгий, большое спасибо Вам за подробное объяснение движения тел в системе планета - Солнце! Хорошо объясняет тот, кто сам хорошо понимает. Ваше предложение заменить неочевидные названия сфер новым «Сфера стыковки межпланетных траекторий» не только удобна и наглядна, но и, главное, содержит глубокий смысл. Хотелось бы, чтобы такое название стало общепринятым.»

       Спасибо за подробный ответ на второй вопрос.

       Очень интересное и понятное объяснение сомнительной устойчивости малых тел в точках либрации. Я раньше об этом не задумывалась.

       Гало-орбиты КА Спектр РГ требуют коррекции каждые 40 – 70 суток.  Может быть, этим молча корректируется и положение точки Л2?

       По-моему, у Вас возникло желание продолжить свои исследования, особенно с учетом влияния Бари-Центра. Это интересная тема. Желаю успехов!

  • Георгий: Всем привет от инженера-механика по динамике полёта и системам управления Летательных Аппаратов   5 лет 32 недели назад

    Уважаемая RMR_astra  поздравляю Вас с праздником, с Рождеством Христовым!  Желаю Вам всего самого хорошего! 

    Ваш вопрос как бальзам для моей изголодавшейся теормеховской души! Это моя стихия! В самую точку (L2). Шутка.  Мы постараемся вместе с Вами  разобраться с этими точками L1-L5. Мне ещё пару месяцев назад было не до "сферы Хилла", а теперь,  как видите, разродился последним комментарием на тему "сфер". Надеюсь, Вам понравился мой комментарий. Извините, если поколебал веру многих в обоснованности применения всех сфер с тяжеловесными названиями, но кроме "сферы Хилла" говорить вообще больше не о чем.  Я, надеюсь, убедил и Вас в их бесполезности. А теперь это будет продолжением этой темы, следующим комментарием!  

    Если коротко, то  ЯВНОЙ УСТОЙЧИВОСТЬЮ  обладают, например,  точки: L1 и L2, да и то НЕПОЛНОЙ, а частичной за счёт своего положения на линии "Солнце-Земля". В одной плоскости, проходящей, например,  через точку L1 (или L2) и перпендикулярную линии "Солнце-Земля" по отклонению тел от этой лини УСТОЙЧИВОСТЬ ЕСТЬ, а вот в направлении вдоль этой же линии "Солнце-Земля" НЕТ никакой устойчивости, а есть положение НЕУСТОЙЧИВОГО РАВНОВЕСИЯ для точки L1 (а для L2 его вовсе нет), т.е.  балансирования как у канатоходцев.

      В плоскости, перпендикулярной линии "Солнце-Земля" устойчивость по положению, в направлении перпендикулярном этой линии "Солнце-Земля" вызвана тем, что если тело L1 (или L2) начнёт вырываться вперёд или отставать вдоль своей орбиты относительно линии "Солнце-Земля", то ПРОЕКЦИЯ ОТ УСКОРЕНИЯ притяжения Землёй на эту плоскость СТАНЕТ НЕНУЛЕВОЙ И ПРИТЯГИВАЮЩЕЙ тело L1 (L2) к её прежнему положению на линию "Солнце-Земля" независимо от направления ухода (вперёд или назад) от Земли.  Это можно назвать устойчивостью по положению на линии «Солнце-Земля» за счёт ускорения притяжения к Земле.  Когда тела L1 и L2 расположены ровно на одной линии "Солнце - Земля " ПРОЕКЦИЯ ОТ полного УСКОРЕНИЯ притяжения Землёй для этих тел на эту перпендикулярную к линии плоскость НУЛЕВАЯ по величине.  Иначе говоря, Земля за счёт своей гравитации, не замечая  их мизерной массы тянет, за собой два мелких тела, не отпуская от себя ни вперёд, ни назад относительно линии "Солнце-Земля", искажая их нормальные орбитальные скорости, если бы не было притяжения близко расположенной Земли.  Ведь  нормальная величина орбитальной скорость кругового вращения для орбиты тела L1 всегда  БОЛЬШЕ орбитальной скорости Земли, а для тела L2 МЕНЬШЕ  орбитальной скорости Земли, если между телами L1и  L2 не было  бы Земли, например, при её расположении на другой стороне от Солнца. В процессе «волочения» за собой двух тел L1 и L2 (при удерживании их на линии «Солнце-Земля» )  Земля своим  притяжением ДОПОЛНИТЕЛЬНО сообщает БОЛЕЕ ВЫСОКУЮ скорость телу L2, и более НИЗКУЮ скорость для тела L1 относительно их НОРМАЛЬНЫХ ОРБИТАЛЬНЫХ СКОРОСТЕЙ на тех же орбитах вокруг Солнца при условии отсутствия притяжения от Земли. При этом мы всё время подразумеваем, что рассматриваем в точках L1 и L2 не простые неуправляемые массы,  а  УПРАВЛЯЕМЫЕ СТАНЦИИ С КОРРЕКТИРУЮЩИМИ ДВИГАТЕЛЯМИ, которые УДЕРЖИВАЮТ  L1 и  L2 от естественного изменения расстояния  между  L1 (L2)  и Землёй вследствие присущей им НЕУСТОЙЧИВОСТИ , стабилизируя дальность за счёт периодических коррекций двигателем требуемые нам расстояния для станций L1 и L2.  

          Действительно, в направлении  линии "Солнце - Земля "  при небольшом отклонении от точки либрации (равенства ускорений притяжения от Солнца и Земли) в любом направлении вдоль линии "Солнце-Земля" тело L1 начнёт притягиваться либо к Солнцу , либо к Земле, т.е. куда отклонилось в том направлении и начнёт ускоряться, как например шар скатывается с гряды возвышенности в любую из сторон, а тело L2 - только всё время стремится "скатиться" в сторону Земли, т.к. у него вообще нет даже точки неустойчивого равновесия, как у L1.  Это и есть неустойчивость положения этих тел как вдоль вышеназванной  линии, так и для подавляющей части всех других линий, направленных под углами, менее 90 градусов к этой линии.   Поэтому-то и нужна подработка двигателями малой тяги (ускорения ведь в начале ухода мизерные) в противоположную сторону от сваливания тел L1 и L2 для компенсации ухода от требуемой нам дальности отстояния тел L1и L2 от Земли. В этом сможет помочь только измерение расстояния тел до Земли и периодическое включение двигателей по достижению предельно допустимого ухода для нас ухода тел от требуемого нам их положения относительно Земли. 

    Ещё раз отметим, что НЕУПРАВЛЯЕМЫЕ тела не останутся в этих точках надолго и разбредутся  относительно своей начальной дальности до Землиэ  Но притянуть тела L1(L2) , если они представляют из себя управляемые  искусственные станции близко к Земле мы не позволим за счёт включения корректирующих реактивных двигателей, препятствующих сближению с Землёй (или уходу в сторону Солнца от балансировочного положения для тела L1 (L2 притягивает только Земля).    

    Кстати, недавно видел небольшую мультипликацию на тему визуальной демонстрации вот этого вида неустойчивости в направлении «Солнце-Земля», правда, для тел ВРАЩАЮЩИХСЯ вокруг Солнца или Земли в виде эдакой восьмёрки в центре одного из кругов которой расположено Солнце, а в другом центре Земля (а может это была выдуманная пара тел). Так вот при вращении третьего тела на предельной дальности, близкой к положению точки L1,  оно проскакивало через эту самую точку либрации L1с орбиты вокруг одного тела на орбиту вокруг соседнего тела, выписывая траектории в виде восьмёрки. Что вполне можно теоретически допустить.

    Приведу Вам аналогию с пространственной формой этой самой НЕПОЛНОЙ  устойчивости из интернета. Где-то я успел недавно её увидеть. Это самое обыкновенное седло для лошади в направлении туловища лошади сечение седла представляет собой что-то похожее на вогнутую кривую, передний и задний выступы седла не дают вам съехать вперёд или назад при торможении или разгоне лошади - это устойчивость вдоль туловища лошади, а вот в перпендикулярном к туловищу направлению сечение седла представляет выпуклую вверх кривую, чтобы Вы могли удобно сидеть без мешающих выступов, а иногда и невольно, свалиться при повороте с лошади в любую сторону влево или вправо. Это уже неустойчивость  в другом направлении. Вот такая картина с устойчивостью для точки L1.  А для точки L2  это не уже не выпуклая вверх кривая, а наклонная линия в сторону Земли  без всяких положений неустойчивого равновесия.

    Без периодической (возможно и довольно редкой по времени) коррекции малой тягой в точке L1 всё равно не обойтись.

    В этом плане точка  L2 ещё хуже: там нужно ВСЁ ВРЕМЯ КОМПЕНСИРОВАТЬ ускоряющее притяжения от Земли (или же, отдельными редкими включениями двигателя (коррекциями) компенсировать накопившуюся величину сближения с Землёй по расстоянию до неё с момента предыдущей коррекции). Ведь для того, чтобы висеть над планетой БЕЗ орбитальной скорости вокруг неё (не вращаясь) надо  создавать реактивную тягу двигателем, компенсирующую силу притяжения к Земле, ну как, например, у вертолёта: пока винт вращается он висит над Землёй.  Хотя продольная устойчивость  для  L2  вдоль  линии "Солнце - Земля "), как и в L1, тоже есть, но вдоль линии "Солнце - Земля -L2"сечение уже не выпуклая вверх кривая, как в L1, а наклонная кривая в сторону Земли, скатывающая всё время тело L2 в сторону Земли. Так что необходим запас топлива для удержания тел L1 и L2 в требуемых нам положениях относительно Земли.  С точки зрения максимального увеличения миссии нахождения тела в точке L2 это отодвинуться подальше от Земли, где ускорения притяжения от Земли будет поменьше и соответственно меньше требуемый запас топлива на борту станции.

      Подчеркну, что все притягивающие тела (Солнце и Земля) расположены СЛЕВА от точки L2 , а справа от неё НЕТ НИКАКОГО притягивающего тела  , которое смогло бы скомпенсировать силу притяжения от Земли, действующую на L2. , там пустота.  Ведь сила притяжения от Солнца "работает" на вращение обеих тел Земли и L2 , а осталась ещё и сила притяжения между Землёй и телом L2 в её полном виде, а поскольку нет вращения L2 вокруг Земли (т.е.  НЕТ орбитальной скорости вокруг Земли), то оно ускояясь рухнет прямо на Землю какому-нибудь новому несостоявшемуся Ньютону, если не скомпенсировать притяжение Земли силой тяги двигателя.  Ведь справа от Земли, увы, НЕТ второго Солнца для L2. При этом надо на борту станции иметь неприкосновенный аварийный запас топлива для сообщения спутнику к моменту окончания его миссии станций  в точках L1 и L2 (при выработке основного запаса топлива) небольшой орбитальной скорости относительно Земли для их ухода на Земную орбиту, чтобы они не рухнул на Землю, а продолжили свою работу, но  уже в качестве земных орбитальных  спутников и ,естественно, с безусловным покиданием точек  L1 и L2 и  переходом на спутниковую орбиту Земли, где им уже точно не понадобится включать двигатель, если орбита будет довольно высокой без торможения остатками атмосферы на этих высотах.  Хотя для точки L2 этот запас топлива может оказаться даже не нужным, поскольку тело L2 при вращении его на линии «Солнце- Земля» уже более высокую скорость относительно скорости Земли и вполне возможно. Что при падении тела L2 при падении тела в сторону Земли с уже выключенными двигателями оно ДОПОЛНИТЕЛЬНО РАЗГОНИТСЯ Землёй  и сможет выйти на эллиптическую довольно вытянутую орбиту, как и в моей задаче «Трёх тел» на максимальной дальности «сферы Хилла» (при условии соответствующего превышения  по скорости относительно скорости Земли за счёт соответствующей дальности отстояния тела L2 от Земли). Возможность этого саморазгона надо проверить расчётами, или определить такую большую дальность отстояния L2 от Замли, чтобы это выполнялось. Однако, скорее всего, такая вытянутая орбита с существенно переменной эллиптической скоростью вращения не подойдёт для станции  и тогда надо иметь специальный неприкосновенный запас топлива, чтобы сообщить станции дополнительную скорость до величины КРУГОВОЙ орбитальной скорости вокруг Земли на типовой для тела L2 дальности, которую поддерживали до этого ранее коррекциями двигателя.

       Благодаря одному из комментариев в Интернете наткнулся на упоминание о БАР-Центре. И тут же понял, что это тот самый возможный и ЕДИНСТВЕННЫЙ источник дополнительных возмущений при расчёте влияния Солнца на тела, для точек L3-L5, объясняющий их существование как либрационных точек. В своей полной программе "Трёх тел" в блоке расчёта начальных условий мне приходится определять его координаты. Короче суть состоит в том, что центр вращения системы Солнце-Земля расположен не в центре масс Солнца, а чуть смещён в сторону Земли в отношении обратной пропорциональности их масс. И поэтому и Земля и Солнце вращаются относительно него, а не вокруг центра масс Солнца. Это, возможно, и  приведёт к тому, что Солнце описывает вокруг Бар-Центра также мизерную круговую орбиту, как и Земля свою орбиту вокруг Бар-центра. Это можно представить в виде вращения длинного горизонтального стержня на концах которого расположены Солнце и Земля вокруг вертикальной оси, приваренной вместе Бар-центра, слегка смещённого от Солнца в сторону Земли), а вот теперь Солнце, возможно,  сможет вносить дополнительные возмущения на движение мелких тел L3-L5 которые будут вращаться уже НЕ ОТНОСИТЕЛЬНО Бар-Центра как Земля и Солнце, а относительно ТОЛЬКО ЦЕНТРА МАСС Солнца, поскольку их массы не сравнимы с массой Земли и уж тем более Солнца и НИКАКОГО дополнительного смещения Солнца в их строну НЕ БУДЕТ.  А вот влияние этого дополнительного "эксцентриситета" вращений точек L3-L5 вокруг Солнца, а  Земли и Солнца  вокруг Бар-Центра надо проанализировать. Мне можно и  промоделировать это на своей программе "Трёх тел", но потребуется её доработка по изменению блока ввода начальных условий для тел типа L1-L5. 

     Однако на движение  L1 и L2  вращение Солнца вокруг Бар-Центра не окажет никакого влияния, т.к. эти точки лежат на одной прямой Солнце-Земля. Для них все вышеприведенные выводы останутся без изменений.

      В  процессе анализа точек L1-L5 забыл ответить на ваш прямой вопрос о точке L2 по поводу равенства ускорений от Солнца и Земли. Поискав информацию о точках L1 в L2 интернете увидел картинку, где для этих точек берут расстояние из "сферы Хилла" ПО ОБЕ СТОРОНЫ ОТ ЗЕМЛИ величиной  1,5 млн.км (хотя правильнее брать более точную оценку этой дальности из рис.1 предыдущего моего комментария о "сферах" ~1,68млн.км). Это весьма странно для внешней стороны от Земли, т.е. для точки L2.  До этого я не знал о конкретной величине дальности до точки L2 и рассуждения проводил выше в общем виде без учёта величины дальности. И понял, что, возможно,  по умолчанию имеется в виду, видимо,  дальность до L2, соответствующая радиусу  "сферы Хилла" для Земли, хотя это вовсе и необязательно для L2, т.к. для неё НЕТ положения УРАВНОВЕШИВАНИЯ ускорений от Солнца и Земли, поскольку они для тела L2 ТОЛЬКО СУММИРУТСЯ, т.к. Солнце и Земля расположены по одну сторону от тела L2 ! А вот для тела L1 они вычитаются и на дальности близкой к радиусу "сферы Хилла" для Земли полностью уравновешиваются и тело свободно висит между двумя притягивающими в разные стороны большими массами и поэтому появляется неустойчивое положение равновесия для тела L1.

      Повторюсь, видимо, многие считают точку L2 (с дальностью от Земли, раной радиусу "сферы Хилла") похожей на L1 с точки зрения равенства ускорений притяжения от Солнца и Земли. Элементарное заблуждение!  Если в точке L1  они РАЗНОНАПРАВЛЕНЫ и уравновешивают друг друга до НУЛЯ, то в точке L2, отстоящей на почти такое же расстояние (оно немного поменьше, но это сейчас неважно) эти ускорения уже СУММИРУЮТСЯ как НАПРАВЛЕННЫЕ УЖЕ В ОДНУ И ТУ ЖЕ СТОРОНУ к Солнцу. 

      Но уже было отмечено в начале данного ответа, реально надо учитывать не их сумму, а только УСКОРЕНИЕ от Земли, т.к. ускорение от Солнца полностью занято  искривлением траектории L2, превращая её в орбиту вокруг Солнца, как  и одновременно с этим формирует орбиту вращения и для Земли.  А в остатке имеем ускорение притяжения от Земли для тела L2, под воздействием которого тело L2 всё время  стремится к ускоренному падению на Землю.

     Все мои рассуждения проводились в ИНЕРЦИАЛЬНОЙ невращающейся  системе координат, в которой все тела видны из космоса (в положении  над Солнцем)  ВРАЩАЮЩИМИСЯ ВОКРУГ него и поэтому мне не надо было заморачиваться учётом  фиктивных центробежных сил (а точнее, центробежными ускорениями) из-за вращения тел вокруг Солнца.

     Теперь можно, для сравнения,  провести этот же анализ ускорений для L2 и в неинерциальной ВРАЩАЮЩЕЙСЯ Системе Координат(СК) с началом в центре масс Солнце  и продольной осью направленной на центр масс Земли и поэтому уже  вращающейся вместе с угловой скоростью вращения Земли вокруг Солнца, как это было сделано  в рис.для "сферы Хилла", приведенном в начале статьи. Для этого нам надо к ДОПОЛНИТЕЛЬНО  к гравитационным ускорениям от Солнца и Земли, действующим на тело L2,  ДОБАВИТЬ ещё и ЦЕНТРОБЕЖНОЕ УСКОРЕНИЕ ОТНОСИТЕЛЬНО НАЧАЛА  НЕИНЕРЦИАЛЬНОЙ СК, вызванное её вращением с угловой скоростью вращения Земли, которое и уравновесит ТОЛЬКО УСКОРЕНИЕ  ОТ СОЛНЦА для  L2.  Однако при этом НЕ НАДО забывать, что на тело L2  ДЕЙСТВУЕТ  ускорение от Земли, которое, в итоге,  осталось ничем нескомпенсированным, и будет вызывать ускоренное падение к Земле.      Видимо, многие, и забывают об ускорении, вызванном притяжением Земли, когда прикладывают ЦЕНТРОБЕЖНОЕ ускорение в неинерциальной СК, вызванное вращением тела L2 вокруг Солнца, и которое ЧИСЛЕННО РАВНО УСКОРЕНИЮ ОТ ЗЕМЛИ НА ДАЛЬНОСТИ  отстояния L2 от Земли  ДЛЯ "СФЕРЫ ХИЛЛА", где они действительно равны и наивно, полагают при этом, что ЗА СЧЁТ ЭТОГО ОНИ ОБНУЛИЛИ ВСЕ УСКОРЕНИЯ, действующие на L2,  ЗАБЫВ  про  действующее ничем нескомпенсированное ускорение от Земли.  

    Так что, реально надо выводить станции в точку L2  не на дальность "сферы Хилла", а как можно дальше, что бы сэкономить на расходе топлива для компенсации притягивающего полного ускорения от Земли, но при этом будет ещё и ослабевать (но не пропадёт из пределами "сферы Хилла")  эффект от стабилизации по скорости за счёт Земли, увлекающей тело L2  к линии «Солнце-Земля».

      Впрочем, не надо думать, что в точке L2 ситуация по требуемому расходу намного хуже, чем в точке L1. Сами коррекции по величине тяги, а точнее, по расходу топлива на удержание  в области этих точек при дальности до L2, как и для  L1, равой радиусу "сферы Хилла"при УСЛОВИИ ОДИНОКОВОГО ОТКЛОНЕНИИ ОТ этих точек телами L1 и L2 ПО РАССТОЯНИЮ БУДУТ, естественно , РАВНЫМИ ПО ВЕЛИЧИНЕ РАСХОДА ТОПЛИВА , необходимому для возврата тела в исходное требуемое состояние на  одинаковую расчётную дальность (радиуса Хилла) , поскольку зависимость гравитационного притяжения Земли от дальности в обе стороны от Земли на точки L1и L2 симметричная, а ускорение от Солнца здесь ни при чём, т.к оно занято своим делом искривления траектории полёта Земли и тел L1 и L2 .

       Но разница между точками L1 и L2 всё-таки есть и состоит она в том, что при УДАЧНОМ ВОЗВРАТЕ ТОЧНО в точку L1, где обнулится разность ускорений от Солнца и Земли, тело L1 может  довольно долго продержаться в этом состоянии НЕУСТОЙЧИВОГО равновесия, пока оно рано или поздно из-за внешних возмущений обязательно начнёт опять отклоняться либо в сторону Солнца, либо к Земле. И чем ДОЛЬШЕ ПО ВРЕМЕНИ тело L1 будет сможет продержаться в состоянии неустойчивого равновесия НА СТОЛЬКО ЖЕ ДОЛЬШЕ ПО ВРЕМЕНИ до следующей коррекции своего положения оно сможет продлить СВОЮ МИССИЮ (до момента исчерпания бортового запаса топлива) НАХОЖДЕНИЯ в ТОЧКЕ L1  ПО СРАВНЕНИЮ С ПРОДОЛЖИТЕЛЬНОСТЬЮ МИССИИ для тела L2 (конечно же, при одинаковых условиях их по начальной массе и запасу топлива).  Ведь у тела L2 , по сравнению с тело L1  в принципе НЕТ ТАКОГО СОСТОЯНИЯ НЕУСТОЙЧИВОГО РАВНОВЕСИЯ  из-за того, что на него ВСЁ время действует ускорение притяжения от Земли!  И как только мы вернём за счёт очередной коррекции тело L2 на требуемое нам расстояние, равного величине радиуса "сферй Хилла,"   и выключим двигатель коррекции оно тут же  начнёт ускоряться в обратную сторону к Земле до момента следующей коррекции и т.д. .

    Единственное, что поможет дополнительно продлить МИССИЮ  тела L2 в сравнении с миссией этой же станции в точке  L1 это снизить расход топлива на каждую коррекцию за счёт  вывода тела L2  на большую дальность, чем у тела L1, т.е. на расстояние большее радиуса "сферы Хилла", чего нельзя сделать, кстати, для тела L1, т.к оно жёстко определено величиной радиуса "сферы Хилла". Но, при этом надо учесть и проанализировать расчётами возможное  снижение эффективности удержания тела L2  Землёй по скорости  на линии "Солнце-Земля-тело L2" из-за уменьшения величины Земного ускорения. 

    Георгий     09.01.2020 18ч.10м. вр.моск.

  • Георгий: Всем привет от инженера-механика по динамике полёта и системам управления Летательных Аппаратов   5 лет 32 недели назад

    Уважаемый Георгий! Ваш ответ говорит не только о Вашем очень высоком уровне как специалиста, но и о Ваших человеческих качествах.

    У меня к Вам еще вопрос. Правильно ли я написала, что в точке Л2 силы притяжения Солнца и Земли равны? Я, возможно, примитивно считала, что притяжение маленькой по массе Земли на небольшом расстоянии сравнимо с притяжнием массивного Солнца на большом расстоянии. Ведь есть тонкости, кроме эллиптичности земной орбиты и притяжения других тел Солнечной системы, влияющие на гало-орбиты и фигуры Лиссажу.

  • Георгий: Всем привет от инженера-механика по динамике полёта и системам управления Летательных Аппаратов   5 лет 32 недели назад

    Уважаемая  RMR_astrа            

    пт, 03/01/2020 - 16:34.

    Спасибо за обращение ко мне, но я, к сожалению, не являюсь спецалистом по космическим полётам и никогда с ними не сталкивался. Вся воя трудовая деятельность прошла в расчётах траекторий самонаведения ЛА.  Посмотрел на Вашу ссылку гало-орбиты и одноимпульсные и понял, что эти вопросы мне не по зубам. В них своя сложная для меня специфика. Поэтому извините, что ничем Вам не смогу помочь. Для меня это совершенно другая область космической баллистики со своими специфическими методами и приёмами решения тректорных вопросов, которыми мне не довелось заниматься.

    Уверяю Вас, что  это не отписка с моей стороны, а честное признание в своей некомпетентности в данной технической области. Но я всегда буду рад Вам оказать поддержку, если у Вас возникнут ещё вопросы, которые мне окажутся по силам.

     Поздравляю Вас с Новым Годом! Желаю здоровья, личного счастья и успхов в Вашей деятельности.

    Георгий. 06.01.2020. 23ч15м время моск.

  • Георгий: Всем привет от инженера-механика по динамике полёта и системам управления Летательных Аппаратов   5 лет 33 недели назад

      Уважаемый Георгий!

       Возможно, Вы сможете ответить на возникший у нас вопрос.

    Известно, что запуск КА «Спектр Рентген-Гамма» откладывался несколько лет. Перед ожидавшимся запуском в 2016 году в Институте Прикладной Математики им. М.В. Келдыша были рассчитаны одноимпульсые орбиты перелетов.

       «Предложенный алгоритм позволяет находить гало-орбиты и одноимпульсные  

    перелеты на них и в случае, если требуется, чтобы КА находился в близкой окрестности Л2…»

        «Работа посвящена описанию алгоритма построения траекторий перелета КА с низкой околокруговой орбиты на гало-орбиту с заданными параметрами около Л2. Рассмотрены прямые перелеты и перелеты с использованием гравитационного маневра у Луны.»

       В 2013 году российская ракета Союз-СТ и разгонный блок Фрегат-МТ с космодрома Куру вывели  на орбиту к Л2 европейский КА Гайя. Перелет без коррекций занял 22 суток.

       13 июля 2019 года с космодрома Байконур был произведен запуск КА «Спектр Рентген-Гамма».22 июля – 1-я коррекция с двумя включениями двигателей. Вторая коррекция – 6 августа 2019 тоже с двумя включениями двигателей. Предполагалась еще одна коррекция  21 августа, но не понадобилась и хорошо, что сэкономили горючее. Третья коррекция – 21 октября 2019. 

      «Через 100 дней после запуска КА Спектр-РГ вышел к точке Л2. За это время было израсходовано 17 кг топлива на 3 коррекции.»

       Почему КА «Спектр РГ» не был запущен по более экономичной орбите?

  • Предновогодние пролёты МКС   5 лет 33 недели назад

         Знакомство жены с видом пролетающей МКС соответствует не её вниманию к этому, а, скорее, поговорке "С кем поведёшься..."

  • Предновогодние пролёты МКС   5 лет 33 недели назад

          Внимание жены к увлечению мужа заслуживает уважения. Это лишний раз доказывает, что целеустремленность, увлеченность обладают энергетикой и оказывают влияние на окружающих. 

    Добавлю своё. Если по каким-то причинам пропускаю наблюдение за пролетом МКС, которое было опубликовано ВИ0540 на сайте,  у меня возникает чувство вины перед автором сообщения.

  • Что сильнее притягивает Луну: Земля или Солнце?   5 лет 34 недели назад

    Прекрасное объяснение данного вопроса: грамотно с точки зрения законов класической механики, кратко и  чётко! Короче не скажешь...

    Но на мой взгляд, из-за краткости объяснение  оказалось рассчитаным  на более продвинутого читателя (знакомого с понятием сферы действия тела), который уже и сам близок к правильному ответу.   Для совсем начинающих, которых ещё очень много, надо бы поподробнее, но это уже ближе к статье, чем к комментарию... 

    Редко в последние времена удаётся прочитать такие краткие комментарии. Отлично. 

  • Георгий: Всем привет от инженера-механика по динамике полёта и системам управления Летательных Аппаратов   5 лет 35 недель назад

    Уважаемый Георгий

    Спасибо, очень интересный материал 

  • 22 декабря 2019 года - день зимнего солнцестояния   5 лет 35 недель назад

    Уважаемая Полина! Спасибо  за важные сведения о Солнце, за Ваш добрый текст и за то, что вселяете надежду, что все же будет светлее!

  • Пролёты МКС 10 - 12 декабря 2019 года   5 лет 35 недель назад

    Дорогой Всеволод Иванович, как-то мы с Вами перестарались во взаимопонимании.

    Ваше поздравление вызвало улыбку и самые приятные чувства. Дата не имеет никакого значения.

    Лет 12 назад на конференции один ученый, очень деликатный в личном разговоре поделился, как ему сложно добираться в общественном транспорте, ходить по магазинам, но как только он проходит турникет проходной своего НИИ, сразу чувствует себя раскованным, вокруг вежливые интеллигентные люди, никто не нахамит.

    И вот могу совершенно искренне написать, что для меня таким уголком другого мира является наш сайт. Когда вижу на сайте новые материалы, написанные RMR_astra или ВИ0540, сразу возникает  благодарность и уважение за бескорыстно вложенные знания, силы, время. Всё, что публикуете, по-настоящему умное, профессиональное и востребованное. В данный момент сайт продолжает активно жить благодаря именно этим авторам.

  • Пролёты МКС 10 - 12 декабря 2019 года   5 лет 35 недель назад

         Конечно, поздравление с Новым годом  9 декабря выглядит глупо. Но, ведь это было не поздравлением, а всего лишь сообщением о предстоящих, "наступающих"  в новом году пролётах станции, но выраженное явно
    неудачно.   А Полина своим ответным поздравлением имено меня 12 декабря - подчеркнула эту глупость. Я не обижаюсь (сам виноват), а предлагаю улыбнуться на всё это  и согласиться, что нам надо лучше понимать друг друга и точнее выражать свои мысли.

  • Пролёты МКС 10 - 12 декабря 2019 года   5 лет 36 недель назад

    ВИ0540, 9 декабря 2019 года:

    С наступающим 2020 годом !

    С Новым годом, уважаемый ВИ0540!

    Спасибо за Ваши сообщения в любом виде о пролетах МКС. Дорогу осилит идущий.

    Виктор Михайлович иногда вспоминает поразивший его эпизод в фильме советских времен:

    Наш бронепоезд окружен врагами со всех сторон, из пушек отстреливаются, пока есть снаряды. И тут враги направляют по той же колее бронепоезда паровоз на таран. Командир стал разворачивать пушку, чтобы уничтожить вражеский паровоз, но заклинило поворотный механизм. И тогда командир хватает кувалду и начинает упорно бить, пытаясь развернуть пушку.

    Возможно, такая аналогия покажется совершенно неуместной, но лично для меня сообщения о пролетах МКС - своеобразный луч света в туннеле между прошлым и будущим.

  • Георгий: Всем привет от инженера-механика по динамике полёта и системам управления Летательных Аппаратов   5 лет 36 недель назад

    Уважаемый Георгий, добрый день!

    Вы зарегистрированы на сайте.  Можете выставлять свои материалы.

  • Про МКС. 3   5 лет 37 недель назад

    Уважаемый ВИ0540, перед тем, как написать слово проницательны, даже посмотрела в словаре интернета, что точно означает это слово:

    проницательный - наблюдательный, многое замечающий

    Для того, чтобы ненароком не обидеть, об иронии не было в мыслях и намека. Вы же знаете, как я к Вам отношусь.

    Ну а с компьютерными "роботами" я, конечно, нафантазировала. Задала вопрос админу, он пообещал посмотреть, с чем связан такой всплеск посетителей, но пока не сообщил. На сайте ежедневно регистрируются, пытаясь получить доступ на сайт десятки посетителей. Но в тот день количество зарегистрированных, но сразу же автоматически заблокированных было не больше, чем в другие дни. 

  • Про МКС. 3   5 лет 37 недель назад

           Уважаемая Полина!  "Вы очень проницательны" - надеюсь, это ваша ирония, если Вы  мои шуточные "гипотезы" называете "проницательностью"?
         Так неужели действительно есть какие-то  компъютерные "роботы", не отмечающие чтение страниц?  Но зачем?  Может, чтобы скрыть свой интерес к какой-то статье?  Но почему не скрывают себя от учёта  как  гостя?  И,  главное, почему так многократно?   Зачем  и  кому  это нужно - я не вижу логики.

  • Про МКС. 3   5 лет 37 недель назад

    Уважаемый ВИ0540, Вы очень проницательны.

    Резкое увеличение потока посетителей на сайт связано с выставленной статьей Американцы единственные, кто побывал на Луне, вернее даже с комментарием к этому материалу. Компьютерные "роботы" как-то умеют считывать без захода на конкретную страницу сайта.

  • Про МКС. 3   5 лет 37 недель назад

    Поддержу уважаемых авторов репортажа и комментария музыкальным исполнением:

  • Про МКС. 3   5 лет 37 недель назад

    Очень правдивый репортаж. Надеюсь, что проведенные научные исследования принесут пользу, но цена за это -  здоровье и тяжелые условия жизни космонавтов. Еще сложнее  будет в экспедициях на Луну и Марс. В результате – очень много интересного и полезного для землян, но я думаю, что возможны только экспндиции, подолгу жить там невозможно. Роботы могут работать на любых планетах и передавать очень ценную информацию, а живым людям нужна только Земля – маленькая, голубая и зеленая, теплая, родная.

    Трава у дома

    Земля в иллюминаторе, земля в иллюминаторе,
    Земля в иллюминаторе видна...
    Как сын грустит о матери, как сын грустит о матери,
    Грустим мы о земле - она одна.
    А звезды тем не менее, а звезды тем не менее,
    Чуть ближе, но все также холодны.
    И, как в часы затмения, и, как в часы затмения
    Ждем света и земные видим сны.

    И снится нам не рокот космодрома,
    Не эта ледяная синева,
    А снится нам трава, трава у дома,
    Зеленая, зеленая трава.

    А мы летим орбитами, путями неизбитыми,
    Прошит метеоритами простор,
    Оправдан риск и мужество, космическая музыка
    Вплывает в деловой наш разговор.
    В какой-то дымке матовой земля в иллюминаторе,
    Вечерняя и ранняя заря,
    А сын грустит о матери, а сын грустит о матери,
    Ждет сына мать, а сыновей - Земля.

    И снится нам не рокот космодрома,
    Не эта ледяная синева,
    А снится нам трава, трава у дома,
    Зеленая, зеленая трава.

                          Автор Анатолий Поперечный, музыка Владимира Мигули.

  • Про МКС. 3   5 лет 37 недель назад

         Действительно, интересно!  "Посетители" - это "гости?". Но число просмотров статей заметно не уеличилось.Значит, они лишь зашли на  Главную страницу и могли увидеть всё то, что на ней выложено. Почему же вы спрашиваете меня, хоть я даже ещё и не зашёл сюда? Только потому, что моя заметка сейчас "крайняя" (т.е. верхняя), вы решили, что и я в этом "крайний" ? (Ладно, шучу.)
         Но причиной "интереса" могла быть любая статья этой страницы, или что-то ещё более общее, типа - "ЛКИ".  К примеру, моя "гипотеза"В большом ВУЗе  преподаватель в трёх - четырёх группах студентов объявляет, что на сайте нашей лаборатории есть очень нужный материал, и вечерком нужно всем с ним познакомиться, за что вы получите зачёт.   Вот вам и 364 гостя!..
         Вторая  гипотезапросто какой-то "сбой".

  • Американцы единственные, кто побывал на Луне   5 лет 37 недель назад

    А. И. Попов и А. Велюров никакими достижениями в освоении космоса не прославились. Их основное достижение в том, что они подбирают «факты», доказывающие, что американские астронавты не были на Луне.

      Великий Сергей Павлович Королев – основоположник практической космонавтики  - к сожалению,  погиб в расцвете сил за три года до предполагаемого «обмана дурачков».

      Его основной сподвижник  Валентин Петрович  Глушко – свидетель всех экспедиций американцев на Луну. Сотни их соратников, выдающихся специалистов, которые впервые в истории человечества достигли фантастических для того времени результатов, названными авторами были отнесены к обманутым дурачкам. Заслуги «дурачков» в освоении космоса: создание искусственных спутников Земли, полеты Ю. Гагарина и других замечательных космонавтов вокруг нашей планеты, достижение Луны и доставка на ее поверхность советского вымпела, облет Луны и передача изображения никогда не видимой с Земли обратной стороны Луны, посадка на Луну космических аппаратов, создание луноходов, возвращение на Землю капсул с образцами лунного грунта и др. И всех этих  специалистов так легко обмануть?

       Награждены были многие, но приведу только данные о В.П. Глушко.

    Валентин Петрович Глушко - основоположник советской ракетно-космической техники, академик Академии Наук СССР, действительный член Международной академии астронавтики, дважды  Герой социалистического труда, награжден Ленинской премией правительством СССР, золотой медалью К.Э. Циолковского, 5–ю орденами Ленина, орденом Октябрьской Революции, орденом Трудового Красного Знамени, многими медалями,почетный гражданин многих городов.

       Неужели он и другие наши ракетчики в условиях жесточайшей конкуренции «не заметили» американского обмана с ракетой Сатурн-5, а Советское правительство продолжало их награждать за заслуги перед Отечеством? Ведь раскрыть обман америкацев было бы крайне важно, так как происходило соревнование двух сверхдержав – СССР и Америки. Америка стала нас догонять и в конце концов обогнала.

       А что делали в это время советские спецслужбы? Ведь соренование на ракетах шло не только на поле освоения космоса, но и в военной сфере. Они  тоже дурачки, которых обманули 7 раз? Военная тематика была первичной, а космосом занялись благодаря увлеченности С.П. Королева и желанию обогнать Америку.

       Но по мнению Попова и Велюрова был обманут не только Советский Союз, но и весь мир. К «обманутым дурачкам» были отнесены такие всемирно уважаемые организации как Комитет ООН по космосу, функционировавший  8 лет до полета американцев на Луну, который создал законы правовых юридических взаимоотношений между государствами, осваиваивающими космос; КОСПАР – комитет по космическим исследованиям при Международном совете научных союзов. В комитет входят 13 Международных научных союзов, Академии Наук и научные учреждения 35 стран. КОСПАР был организован сразу после запуска Первого спутника Земли.  На  его пленумах обсуждаются доклады о достижениях в космонавтике, в том числе и о результатах экспедиций американцев на Луну.

      О том, что американцы всех обманули и не были на Луне, пишут люди, непричастные к освоению космоса, например, журналисты, нуждающиеся в сенсациях. Верить им – наивно. Поэтому НАСА не считает нужным им что-то объяснять. Легендарный герой-космонавт Алексей Леонов – первый человек, отважившийся выйти из космического корабля в открытый космос, который по советской программе должен был быть первым человеком, ступившим на Луну, много раз писал о том, что Нил Армстронг и Эдвин Олдрин были первыми людьми, ходившими по Луне.

      К чести ученых УлГУ и руководителей сайта zhvictorm и Полина надо отметить, что они стремятся объективно разобраться в сложившейся ситуации и объясняют некоторые обстоятельства, кажущиеся  «фактами».

  • Про МКС. 3   5 лет 37 недель назад

    Удивила на сайте 1 декабря в 21 час информация:

    Сейчас на сайте 1 пользователь и 364 гостя

    Интересно, с чем связан такой прирост посетителей на сайт.