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Abstract. The work formulates the principle of materiality of space and on its basis a brief
critical analysis of the general ideology of the Special and General Theories of Relativity is
carried out. The connection of the new principle with the previously developed Topological
Theory of Fundamental Fields (TTFF) is considered. A method of constructive implementation
of the principle of materiality in the framework of the physical theory of fundamental �elds is
considered. General equations of the dynamics of markers of material points of physical space
are derived and their physical meaning is established.

1. Introduction
In papers [1, 2, 3, 4, 5, 6, 7, 8] there is a new approach for describing the dynamic of matter and
its structures, including electromagnetic and gravitational �elds, which will be further called
topological theory of fundamental �elds or short TTFF. One of the features of this
approach is the possibility, based on geometric and topological ideas about the structure of space,
to obtain a completely adequate uni�ed description of not only gravity and electromagnetism,
but also quantum phenomena, including elementary particles. This geometric approach is an
alternative to the geometric approach of General Relativity (GR) [9]. In contrast to GR,
topological and geometric ideas in TTFF were initially applied not to the gravitational �eld,
but to the electromagnetic �eld, and �rst of all, to the concept of an electric charge. But
on the basis of a developed ideology, this theory served as the basis for a new description of
the gravitational �eld. Although the general construction of the developed theory is not yet
closed ( [5]), nevertheless, a number of important problems of modern physics �nd a fairly clear
explanation within the framework of this theory. These include, for example, the topological
interpretation of electric and baryon charges, which explains their discreteness. The geometric
interpretation is given to the concept of mass and the concept of the wave function of particles,
which reduces Born's probabilistic postulate to the principle of geometric averaging.

The main problem of TTFF, to which special attention was paid in papers [5, 8], is the
absence of a physical ideology in it, with the help of which one can describe geometrodynamics
of a physical material hypersurface V3 (PMH), embedded in the ambient space W4 per
unit of a larger number of dimensions. The geometry of space in TPFF is simpler than in
GR, and is determined by the embedding of a three-dimensional physical hypersurface into a
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Euclidean space of dimension 4. Therefore, all the properties of such a hypersurface at any
given moment of time t are determined by only one function of height - F(x, t) But until the
physical nature of the hypersurface itself and its environment is known, it is not possible to fully
formulate the principles of describing its dynamics. It should be noted that a similar problem
stood at the �rst stages of the creation of general relativity. This was due to the fact that
there was no direct data on what determines the properties of the curvature of space-time. The
solution was found in the form of postulating the principle of least action in the form of the
Hilbert-Einstein variational principle. This principle was involved in general relativity on the
basis of some indirect ideas concerning the invariant description of the dynamics of matter and
material �elds in pseudo-Riemannian space-time, provided that they should transform into the
equations of Newton's theory of gravitation in the limit to �at space-time. The last requirement
is a particular consequence of the correspondence principle, which plays an important role in
modern physics.

In TTFF, the solution to the formulated problem also has to be sought, relying on some
indirect data. For example, the passage to the limit to the properties of electromagnetic �elds
in vacuum can serve as such indirect information. In the case of weak �elds, electromagnetic
waves in empty space propagate at a �xed speed - the speed of light and are described by the
d'Alembert equations. In TTFF, such a transition should also take place. By analogy with
general relativity, there should also be a passage to the limit to Newton's theory of gravitation.
Since the TTFF claims to describe quantum phenomena as well, then there must be a passage
to the limit in it and to quantum mechanics. All these passage to the limit were found in the
above papers. All of them are a consequence of the mathematical properties of describing the
dynamics of PMH within the framework of the proposed interpretation of electric charge, mass,
etc. Due to this interpretation, all the attributes of matter necessary for modern physics appear
in theory in the form of mathematical connections between the introduced �elds and objects of
geometry and topology.

At the same time, in order to substantiate the TTFF, it is required to carry out a fundamental
analysis of the modern geometric theory of space-time - GR. This analysis is necessary for several
reasons. The �rst of these reasons concerns the need to explain why the method chosen in GR to
describe the geometry of space-time and its relationship with the material objects in it cannot be
considered physically adequate to the general concepts of matter as such. With the mathematical
�awlessness of general relativity, it contradicts the basic concepts of the properties of matter.
The second reason is that such an analysis can provide the missing elements for describing the
dynamics of space, which are necessary to complete the whole concept of TTFF.

Partially a preliminary analysis of the justi�cation for the need to revise the entire concept
of general relativity was carried out in the paper [7]. In this work, we will conduct a more
detailed study of the di�culties of SR and GR, which will give us the opportunity to formulate a
special principle for constructing theories of matter and �elds, including the concept of space and
time. Formalization of this principle, in turn, will make it possible to obtain general information
about how it is necessary to formulate the equations of the dynamics of space as a hypersurface
embedded in the ambient space of four dimensions. The need for such an approach is due to the
fact that the entire concept of TTFFT is based on a set of mathematical identities that allow one
to construct from a uni�ed standpoint the entire set of equations for the dynamics of particles
with mass, electric and baryon charges, which are involved in electromagnetic and gravitational
interactions. However, the theory lacks a dynamic principle that would single out, among all the
possible variants of the geometric dynamics of a three-dimensional hypersurface in the ambient
four-dimensional space, the only one that corresponds to the dynamics being realized in reality.
From a physical point of view, this problem can be formulated as the problem of the absence of
any knowledge about what physical properties the physical hypersurface possesses as a material
object and what properties the "physical environment" that surrounds it in the ambient space
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of four dimensions possesses. This formulation becomes possible only after the analysis of the
admissible general description of the dynamics of material objects from the point of view of
markers is carried out.

At the �rst stage in the proposed work, after discussing the main di�culties of SRT and GRT,
the principle of materiality of PMH is formulated, which is absent in SR and GR. This principle
is a revision of a number of remarks concerning problems with the materiality of space-time in
general relativity and special relativity, which was given in the papers [15, 13, 14, 16], equations
for the fundamental potential are derived in general form - functions of the FMH height, written
in terms of the marker transfer equation. These equations are the main goal of this work, which
represent a tool that allows one to formulate speci�c models of FMG dynamics also in terms of
marker dynamics.

2. Fundamental disadvantages of SRT and GRT
One of fundamental disadvantages of the Special relativity (SR) and General relativity (GR)
( [7]) is the immateriality of physical space. Formally, at least within the framework of GR,
sometimes space-time is thought of as a material object, on the natural basis that it is endowed
with physical properties of curvature. The problem is that no direct measurements for �xing
any elements of this space, as material objects, are provided in SR and GR. This fact can be
formulated approximately as follows: points of the space-time of GR cannot be marked with any
physical marker. However, in the absence of such a procedure, space-time cannot be interpreted
as a material object. Thus, in SR and GR there is matter and an intangible object - space-time,
which nevertheless in some way interact with each other.

The absolute space of classical mechanics is also not material, but this space has no other
properties, except for the obvious property of extension. This means that in reality, distances in
space can be measured exclusively between material bodies or parts of the same material body.
In the latter case, one speaks of length. However, it is not very convenient to remember the set
of individual distances and lengths between the gigantic set of individual material objects and
their component parts - points. It is convenient to combine all these distances into a common
consistent scheme - a space that has three dimensions. According to the observations of classical
mechanics, a consistent scheme is a mathematical construction - a Euclidean three-dimensional
space. Therefore, the absolute Euclidean space of classical mechanics is not a material object,
but a convenient way to describe the set of distances between material bodies. It is important
to state that the absolute space of classical mechanics itself, being a mathematical construction,
does not have any e�ect on material bodies, which is just postulated in Newton's �rst law and
Galileo's principle of relativity.

Newton's corpuscular theory of light did not contradict the idea of the immateriality of space
and time. Individual light particles were some localized material objects, and in this sense, the
distances to them were included in the general scheme of classical mechanics. However, the
contradiction to this fact of the immateriality of space and time was the wave theory of light,
which was �rst formulated clearly by Huygens. If light is waves, then some medium in which
these waves propagate must �ll the entire space as a whole. In this case, it is possible to check
the properties of the model of space as a Euclidean three-dimensional space, considering changes
in the characteristics of the waves that have passed through it. However, in this case, there is a
problem with the need to distinguish the space itself from the environment in it. This problem
became acute after Maxwell created the general theory of electromagnetism. This medium, which
was called ether, had to be discovered and its properties established.

As you know, in the Michelson-Morley experiments, the ether could not be detected. Actually
SR appeared as a theory that tries to build mechanics and electrodynamics without the presence
of ether - a luminiferous medium. In SR, with the help of Lorentz transformations, it is possible
to eliminate from the equations of electrodynamics the terms arising from the transition from
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one inertial frame of reference to another (as in acoustics), moving uniformly relative to the
�rst frame. However, the environmental problem remained unchanged. If electromagnetic waves
are a material object that carries recorded energy, then the question of what oscillates at the
observation point when an electromagnetic wave passes through it remains unanswered. As a
result, we have to admit that the electromagnetic �eld itself is a speci�c form of matter, which
does not have mass and other natural properties of matter.

A completely analogous situation exists with any other �eld, in particular, the gravitational
�eld. As a result, the �elds are singled out into a separate category of matter, which does not
have any material embodiment, but has a number of measurable and observable characteristics,
i.e. �elds have a measurable e�ect on matter.

But if the properties of the electromagnetic �eld are to some extent similar to matter in the
sense that, according to the quantum theory, it has corpuscular properties, then the situation
with the gravitational �eld turns out to be much more complicated. Gravitation does not show
any corpuscular properties. The forces of interaction of this �eld with matter are many times
less than the electromagnetic one. But nevertheless, it has a signi�cant e�ect on bodies of large
mass and determines the entire dynamics of celestial bodies. However, the gravitational �eld
in the area between the bodies does not manifest itself in any way. To explain this behavior of
the gravitational �eld at the end of the 19th century, the general idea was proposed that the
gravitational �eld is a manifestation of the properties of space itself. If there is no environment,
then only the space itself can be endowed with the necessary properties. It was this idea that
formed the basis of Einstein's theory of gravitation in the form of general relativity, although a
more radical idea was put forward by Cli�ord [11].

How does SR solve the problem of the absence of an environment as a material object that
would be a carrier of electromagnetic waves and a repository of other �elds? For this, in SR
space-time is endowed with special properties, consisting in the fact that it a�ects the movements
of material bodies, although in itself, as noted above, it is not a material object. This in�uence
consists in the fact that, without any physical reason, the transition from one inertial frame of
reference to another leads to a change in the scales of length and time. This change is detected
by comparing the standards of length and time in close contact with the help of light signals,
i.e. is a physically detectable phenomenon. It is important to emphasize that the reason for
the change in the standards of length and time under these conditions cannot be any physical
mechanism, since, according to the �rst postulate of the SR, all physical laws are the same in
all inertial reference frames. Thus, a fundamental contradiction of SR appears - an intangible
object - space-time, has quite measurable physical properties.

In general relativity, the non-material space-time is endowed with an even greater number
of physical properties - the components of the curvature tensor of the four-dimensional pseudo-
Riemannian space-time. The curvature of non-material space-time in general relativity a�ects
the motion of material bodies and, moreover, determines the observed properties of material
bodies - their interaction with each other using the forces of gravity. The result of including
both material and non-material objects in the theory is the presence of a number of paradoxes
in SR and GR. An example is the paradox of the SR twins. In general relativity, this is, for
example, the Unruh e�ect, as well as an intractable problem with the energy of the gravitational
�eld [12].

2.1. Kinematic paradoxes of SR and GR

All explanations of paradoxes in SR and GR are usually based on proving the mathematical
consistency of the theory itself, and the irrationality of some of the conclusions of these theories
usually refers to the inability to understand reality from the point of view of the practical
experience of a person living in the macrocosm of classical mechanics. For example, the paradox
of twins requires for its explanation the fact that the frames of reference in which the twins
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are located are not "symmetric". If we compare the frames of reference moving uniformly and
rectilinearly relative to each other, then all the physical laws in them are the same and there
is no way to indicate the mechanism of occurrence of the discrepancy in the clock speed and
the change in the length of the rulers in them. Actually, this is the twins paradox. For twins,
the problem is that aging is a physical process that takes place in the cells of a living organism.
Since all physical processes in both frames of reference are exactly the same, the faster aging
of the twin remaining on Earth is not associated with any physical mechanism. From a formal
point of view, the asymmetry between twins can be found if we take into account the presence
of a mandatory segment of the path of the departing twin astronaut, on which the spacecraft
accelerates. In the frame of reference associated with the departing twin, inertial forces arise,
and in the frame of reference associated with the Earth, there are no inertial forces. Therefore,
it is logical to assume that the discrepancy in the readings of the clocks and the length of the
rulers arises precisely because of the presence of inertial forces in the frame of reference of the
departing twin. However, inertial forces, generally speaking, are the kinematic e�ect of the
formal transformation of coordinates from one frame of reference to another. Therefore, this
asymmetry is irrational from a physical point of view. The forces of inertia in the accelerated
frame of reference are manifested only in the emergence of reaction forces of the support acting
on the astronaut, which ensure its acceleration. Literally, the departing cosmonaut is "pressed"
against the wall of the spacecraft, which creates asymmetry from the point of view of material
forces. However, it is di�cult to imagine that it is the impact of the spacecraft wall on the
astronaut that causes changes in the course of his biological clock. With such an explanation,
it can be assumed that any action of the reaction force of the support should lead to a change
in the lengths of the standards and hours. But even in this case, it remains unclear why the
Lorentz transformations do not contain any references to the presence of inertial forces. With a
"mathematical" explanation of this paradox, they usually stop at the very fact of the presence
of asymmetry in frames of reference, considering that the intangible space-time itself "somehow"
manages to in�uence all clocks and rulers, regardless of their device. A number of problems of
this kind were discussed in the paper of Brillouin [10].

The "muon e�ect" is often cited as evidence that scale contractions in a moving frame of
reference take place in reality. This e�ect consists in the fact that decaying muons, being born
in the upper layers of the atmosphere, have time to �y to the surface of the Earth. Since their
lifetime in a laboratory experiment in a stationary frame of reference is approximately 2·10−6ï¨�,
even at the speed of light, these particles could not travel to decay a distance greater than 600
m. The distance from the region where these particles are born to the Earth's surface is tens of
kilometers. However, it should be borne in mind that today there is no real theory of the muon
decay process. Therefore, it can be assumed that there is a real physical mechanism that is not
associated with the Lorentz transformations, which explains the fact of slowing down of muon
decay. This is all the more important, since, as already noted, the physical processes in the own
frame of reference and the frame of reference associated with the Earth should be the same for
a muon.

3. The principle of materiality
Considering the above analysis as a program for the formation of the concept of three-dimensional
space as a material object, we introduce a special principle of materiality, which will be the
starting point in the creation of a consistent physical theory of �elds and particles. The essence of
this principle can be summarized as the following statement: Any object that has a physically
measurable (detectable with the help of instruments) e�ect on material bodies must
itself be a material object.

For the practice of physical research of observed material objects, this principle does not
provide anything particularly new. However, in relation to the concepts of �eld, space and time,
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this principle leads to important consequences in relation to their physical properties. For space
and time, this principle has at least two ways of consistent implementation.

The �rst method is demonstrated by classical mechanics, according to which space and time
do not possess any properties of materiality and serve as a formal mathematical model for
describing lengths and distances on the one hand, and periods and durations of phenomena on
the other. It is important to emphasize here once again that distances in the absolute space of
classical mechanics can be measured and compared only to certain material objects. At the same
time, it is postulated that material objects are something completely di�erent from immaterial
space and time. Only the distance from one material body to another has physical meaning,
although formally the entire space is covered by a coordinate grid, which re�ects a consistent
way of conveniently generalizing the set of measurements of distances between material objects.
Therefore, in classical mechanics, the methods for measuring length and time are the same in all
space and do not depend on the choice of an inertial frame of reference. At the same time, the
limitation of the area of ??operation of this principle only by inertial reference frames is explained
by the possibility of the appearance in non-inertial reference frames of forces that change the
length of the rulers and the speed of the clock due to obvious physical mechanisms. In a non-
inertial frame of reference, for example, support forces must always arise, forcing the standard
to accelerate. Support reaction forces acting on elastic bodies cause their relative lengthening
or contraction. These facts were discussed by Brillouin in paper [10]. In contrast to this, in SR,
the change in the length of the standards occurs during the transition from one inertial frame of
reference to another, although the �rst postulate of this theory is the sameness of all the laws
of physics in these frames of reference. Therefore, the change in the scales of length and time in
SRT cannot be associated with any real physical mechanism of interaction of material bodies.

Another way of interpreting space, corresponding to the outlined new theory, is to recognize
space as a material object with measurable physical properties. In this case, the points of
this space are recognized as material objects, and any change in the distances between these
points must be caused and explained by speci�c physical reasons. As a way of describing the
geometric properties of such a material space, a model of embedding of a three-dimensional
smooth hypersurface into an enclosing four-dimensional space is proposed W4. This model
means that the properties of a three-dimensional material hypersurface di�er in a measurable
way from the properties of a four-dimensional enclosing space. Since this model includes a new
mathematical object - four-dimensional ambient space and separately time, then the same initial
dilemma arises with a single description of them. It is necessary to make a choice, either we
believe that this space is only a formal way of calculating the lengths and distances in it, or
we believe that this space is also material. In the �rst case, we can rely on our experience in
measuring distances in classical mechanics, since the absolute space of this theory is part of the
ambient space. In this case, the most natural model for calculating the lengths in this four-
dimensional space is the four-dimensional Euclidean space W4, at all points of which the length
of the standards remains unchanged. Moreover, in order for such a procedure to be implemented,
the presence of material objects in W4 is required. As in classical mechanics, in TTFF distances
can be measured only between material objects. Such material objects in TTFF are points of a
three-dimensional physical material hypersurface (PMH).

In the second case, it is necessary to indicate the model of materialization of this space,
which will determine its geometry as a material object. However, in the absence of any precise
information about this space, it is rather di�cult to do this. Due to this, the most logical choice
is the assumption that the ambient four-dimensional space W4 is an analogue of the absolute
space of classical mechanics, but having one more dimensions. This approach was adopted earlier
in the discussed new theory of TTFF.

However, in contrast to classical mechanics, in which the very practice of a physical experiment
was based on the possibility of decomposing matter into separate material points, in TTFF it
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is necessary to restrict ourselves, at least for now, to distances only between the points of the
physical material hypersurface itself. This creates certain di�culties in attempts to formulate
the theory of ambient space, relying on standard classical techniques. Since we have no idea
of ??how a material hypersurface is arranged in a small one, we can still formally rely on
mathematical axioms, according to which a hypersurface in Euclidean space can be represented
as a set of mathematical points, which can be formally associated with some physical parameters,
for example, density masses, energy density, speed, etc. In this case, the PMH is represented as
a continuous and even smooth hypersurface V3 ∈ W4 with physical quantities distributed on it.
As a result, we get an object consisting of many points, the physical meaning of which is not fully
de�ned, but which can serve as a good model for describing the dynamics of matter. It should
be emphasized that these points are not directly related to the material points of classical or
quantum mechanics. The objects of these theories are particles, which are treated in the TTFF
as extended FMG regions, distinguished in a certain way ( [6, 2, 3, 4, 5, 8]).

Suppose W4 as Euclidean space, a Cartesian coordinate system of the following form can be
introduced: X = (x1, x2, x3, x4) = (x, u), where one of the coordinates is highlighted, in this
case u = x4, and orthogonal hyperplane P3 with Cartesian coordinates x = (x1, x2, x3). Then
any hypersurface V3 ∈ W4 can be mathematically singled out unambiguously using one height
function F(x, t) using the equation:

u = F(x, t). (1)

It is in this form that the physical material hypersurface (PMH) was described in the papers
[5, 8]. However, this selection implies that in W4 it is possible not only formally, but also
physically, to single out the hyperplane P3. As pointed out in [5, 8], such hyperplane in W4

stands out by us in the form of an intuitive image based primarily on the rectilinear propagation
of light in a vacuum. Since light does not pass through dense matter in a straight line or does not
pass through individual material objects at all, the idea of the �atness of our world intuitively
continues into the area of space occupied by these objects. Thus, the hyperplane P3 - is a set of
our intuitive ideas in relation to the PMH about the location of material objects relative to each
other, which can be interpreted as the choice of a physical frame of reference.

Following this analysis and the general idea underlying the hypothesis of Cli�ord and Einstein
that matter and material �elds, gravitational and electromagnetic, should be explained by the
properties of the geometry of some space and time, it is logical to relate them to the geometric
and topological properties of the physical hypersurface V 3. But now this method should be
based not on formal considerations such as choosing the Ricci curvature tensor as the density
of the Lagrangian function of the gravitational �eld of the scalar, but on the very ideology of
materiality of the physical hypersurface. Such an ideology, �rst of all, should re�ect the very
meaning of de�ning the materiality of an object as an object that can be observed in a physical
experiment.

4. A method for describing the properties of a material hypersurface
The most obvious property of material objects is their observability, i.e. the ability to track them
using one or another direct physical measurements. This means that each point of a material
object can be associated with a set of physical markers that re�ect measurable properties that
distinguish one point from others. Such markers in hydrodynamics are called Lagrangian markers
and represent the coordinates of each material point at a certain �xed moment in time. It is these
Lagrangian markers that are the most general way to describe any moving material medium at
subsequent times. In this regard, to describe the distribution of matter in the ambient four-
dimensional space W4 it is also necessary to introduce a set of markers Ea(x, t), that uniquely
highlight each point of matter located in it at a point with a coordinate X = (X1, X2, X3, X4)
in time moment t. As noted, we will assume that W4 is a Euclidean space and therefore the
coordinates X can be chosen as Cartesian without loss of generality.



PIRT 2021
Journal of Physics: Conference Series 2081 (2021) 012038

IOP Publishing
doi:10.1088/1742-6596/2081/1/012038

8

Suppose that a material object has the form of a hypersurface V d of dimension d, embedded in
the ambient space VD of dimension D > d. The physical material hypersurface distinguishes the
object under study, and the enveloping space is necessary for introducing the extension property
into the theory of the standard, comparing with which we can get an idea of the change in
dimensions and distances on the physical hypersurface. Geometric markers ea(X, t), a = 1, . . .
will further mean the functions of the coordinates of the ambient space and time, which are
associated with each point of the hypersurface V d ⊂ VD and allow one point to be uniquely
distinguished from other points of this hypersurface. By analogy with hydrodynamics, the value
of the marker function can be the value of the coordinate of a material point in VD at one selected
moment in time t = 0 conduct the measurement ea0(X). Based on this, the number of geometric
markers ea(x1, x2, . . . , xD), a = 1, . . . , D should be equal to D independent functions. In this
case, all markers of points of a material object should be divided into two classes. The �rst
class is global markers, highlighting the physical material hypersurface in the ambient space
as a whole. The number of such markers must be equal to M = D − d. Indeed, the material
hypersurface of dimension d in the Euclidean space VD at time moment t can be speci�ed using
a system of M algebraic equations:

ea(X, t) = Ca = const, a = d+ 1, . . . , D.

Cais a collection of a certain set of real constants that distinguishes a particular hypersurface
among all possible hypersurfaces with other values of global markers.A collection of functions
ea(X, t) can be considered as M markers, which will be called global markers. Their values
are determined at the moment t = 0 using one or another measuring procedure and remain
unchanged at any point of the PMH for any changes in its geometry.

The second class of markers should highlight the points of the FMG itself. These markers
re�ect the movement of points of the FMH with speci�ed physical properties along the PMH
itself when its geometry changes. These markers will be called local or geometric markers.
This means that local markers must be associated with such transformations of the functional
dependence of global markers on X → ea(X, t), that do not change the geometry of the PMH,
but only reduce to redesignating its points.

To describe the motion of the hypersurface V d with time, it is now su�cient to introduce into
the theory the equation of transfer of markers:

∂ea

∂t
+ U i(x, t)

∂ea

∂xi
= 0, a = 1, . . . , D; i = 1, . . . , D. (2)

The �eld U(X, t) with components U i(X, t) will be called the marker transfer rate �eld. Along
the integral curves of this �eld, i.e. integral curves of the system of equations:

dxi

dt
= U i(X, t),

dea

dt
= 0,

Geometric marker values remain constant. Therefore, the �eld U(X, t) of the marker transfer
rate should play a fundamental role in the theory of PMH dynamics, since it is associated
with all the main elements of the marker movement and, as a consequence, the entire material
hypersurface. In this regard, the equation (2) is a mathematical expression of the second
postulate of materiality. Namely: The main mathematical method for describing the
dynamics of a material hypersurface is the equation (2), and the �eld U(X, t) of the
transfer of markers is the fundamental �eld for describing the dynamics of a material
object V d.
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5. Three-dimensional material hypersurface in W4

In accordance with the main provisions of the TTFF, the physical material hypersurface V3 has
dimension d = 3 and is embedded in the ambient Euclidean space W4 of dimension d = 4:
V3 ∈ W4. In this case, among the four markers, one of the markers E4, which we will further
denote as the function ϕ, is a global marker, and the other three are local.

Since the function ϕ(X, t) is a global marker, the FMG can be distinguished into W4 using
one algebraic equation:

ϕ(X, t) = ϕ0 = const. (3)

However, in TTFF, to describe the geometry of the FMH and the physical properties of material
objects that we identify as particles of matter, not the ϕ function, but the height function F(x, t),
is used, with the help of which the PMH is distinguished in accordance with equation:

F(x, t) = u = x4, x = (x1, x2, x3). (4)

here u - the coordinate of W4, corresponding to the orthogonal direction to some distinguished
hyperplane P3 ⊂ W4, on which the Cartesian coordinates are given x = (x1, x2, x3) . It is this
function, called the fundamental potential in the TTFF, that plays the most important role in
the description of the fundamental �elds - electromagnetic and gravitational. In particular, the
solution of the problem of a topological-geometric description of the properties of electric charges,
electromagnetic and gravitational �elds in the TTFF is based on the fact that the function of
the height of the PMH F is associated with local markers e on each simple topological cell (
[2, 3, 4, 5] Appendix) using the equation:

F = F0 +
ε

2
|e(x, t)|2. (5)

Here |e|2 = R2(x, t) = (e1)2 + (e2)2 + (e3)2, and F0 - the function value F at its extremum
belonging to a given cell, and ε = ±1 depending on whether the extremum is a maximum or a
minimum.

Marker transfer equation (2) should, by de�nition, look like:

∂ea

∂t
+ U i(X, t)

∂ea

∂xi
= 0, a = 1, . . . , 4; i = 1, . . . , 4. (6)

However, in papers [6, 2, 3, 4, 5, 8] only local markers were considered, the transfer equation of
which has the following form:

∂ea

∂t
+ V α(x, t)

∂ea

∂xα
= 0, a = 1, . . . , 3; α = 1, . . . , 3, (7)

where the �eld V α(x, t) was speci�ed on the hyperplane P3 and associated with an
electromagnetic �eld. In particular, it was shown that by introducing geometric averaging with
density |J |, the role of which is played by the Jacobian of the transformation x = (x1, x2, x3) →
e = (e1, e2, e3), it is possible to construct all the basic equations of classical and quantum physics,
as well as the equations of the classical theory of gravity in an extended form. It was also shown
[3, 8], that a simple modi�cation of the theory of gravitation in the classical form makes it easy
to explain the phenomenon called dark matter in modern physics. In fact, this means that the
concept of markers is a very e�ective tool for solving a number of problems in modern physics.
Therefore, we can assume that the equations (6) for local markers should be reduced to the form
of equations (7).
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The equation for the global marker can now be constructed from the de�nition of the height
function. Since on FMG the global marker takes some constant value, then based on this we can
assume that the global marker ϕ(x, t, u) is some function of the following form:

ϕ = Φ(u−F(x, t)). (8)

Di�erentiating this equation with respect to x, t and u, and then, excluding the derivative of
the function Φ′(ξ), from the obtained relations, we arrive at the following system of equations
for the function ϕ(x, t, u):

∂ϕ

∂xi
= −∂F

∂xi
∂ϕ

∂u
, i = 0, 1, 2, 3. (9)

This system of equations was considered in [14, 7] and describes a special class of waves -
rivertons. Convolving this system with respect to the index i with an arbitrary continuous
vector �eld ui(x, t, u), we arrive at the following equation for ϕ(x, t, u):

u0
∂ϕ

∂t
+ uα

∂ϕ

∂xα
+ (u,∇F)

∂ϕ

∂u
= 0, (u,∇F) = uiF,i. (10)

This equation can be given the following form:

∂ϕ

∂t
+ Uα(x, t)

∂ϕ

∂xα
+ U4(x, t)

∂ϕ

∂u
= 0. (11)

Here:

Uα =
uα

u0
, U4 =

(u,∇F)

u0
. (12)

The �eld U, de�ned on W4, with the components U i (12) is the �eld for transferring the global
marker to W4. It follows from the last relation that the component U4 of the �eld Ucan be
represented as follows:

U4 = Uα
∂F
∂xα

+
∂F
∂t
.

Therefore, this component U4 of the �eld U is determined by the derivatives of the height
function F and the components of the �eld V = (U1, U2, U3, 0), tangent to the hyperplanes P3.
The case U4 = 0, equivalent to the execution of the equation:

∂F
∂t

+ V α ∂F
∂xα

= 0,

de�nes the transfer equation of the height function and, as a consequence, local markers.
Note that the relations (12) can be slightly changed, proceeding from the fact that the relation

(8) can be generalized, assuming:

ϕ = Φ(u−F(x, t, ϕ)). (13)

This generalization is connected with the fact that, solving the equation (3) with respect to u,
we have the relation:

u = F(x, t, ϕ),

which is equivalent to (4) for some speci�c constant value ϕ(x, t, u) = C = const, which is what
the PMH selects. With this generalization, the global marker can be a multivalued function of
coordinates in W4, which extends the admissible structure of the PMH.
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Di�erentiating (13) with respect to x, t and u and excluding the derivative Φ′(ξ), we have the
same equation (9):

∂ϕ

∂xi
= −Ai

∂ϕ

∂u
, Ai =

∂F(x, t, ϕ)

∂xi

∣∣∣∣
ϕ=const

, i = 0, 1, 2, 3, (14)

with the di�erence that the function F(x, t, ϕ) contains a dependence on ϕ, which is not a�ected
by di�erentiation with respect to coordinates and time. Thus, all the relations (10),(11) remain
valid in this generalized case, and in the equation (12) it is necessary to take into account that
the derivatives with respect to xi on the right-hand side are calculated under the condition
ϕ = const.

6. Equation of geometrodynamics of the second order
The resulting transfer equation for the global marker contains the vector U with its arbitrary
distribution on the distinguished hyperplane P3. This means that the introduction of a global
marker does not yet solve the problem of distinguishing among all possible types of FMG
dynamics in W4 the one that corresponds to the real state of a�airs. For such a possibility
to arise, it is necessary to obtain some consequences of the equations derived in the previous
section, which can be related to some inherently clear dynamic FMG models. Such consequences
can be second order equations for ϕ, which can be obtained from equations (9) or (14), and
which can be interpreted by comparing with some form of dynamics of classical or mathematical
physics.

The calculations will be carried out for the generalized system (14). Instead of the time t we
introduce the variable x0 = ct, where c - is a constant that further plays the role of the speed of
light. This is useful for comparison with existing classical theories. Let us reduce the equations
of the system (14) with the components gij of the diagonal matrix ĝ, which has the form:

ĝ = diag(1,−1,−1,−1), (15)

which imitates the Minkowski space-time metric. As a result, we get the following equation:

gij
∂ϕ

∂xj
= gijAj(ϕ,x)

∂ϕ

∂u
, i = 0, 1, 2, 3.

Calculating now the divergence from the right and left sides of the last equation, we arrive at
the following second-order equation:

♢ϕ =
∂

∂u

(
|A(ϕ,x)|2∂ϕ

∂u

)
+♢F ∂ϕ

∂u
, (16)

where

♢ = gij
∂2

∂xi∂xj
=

∂2

∂x02
−

3∑
α=1

∂2

∂xα2

- is the d'Alembert operator in the coordinate space-time, the action of which on the function
F (x, t, phi) is carried out under the condition ϕ = const. In addition, the designation has been
introduced:

|A(x, t, ϕ)|2 = gijAiAj =
(
A0(ϕ,x)

)2
−

3∑
α=1

(
Aα(ϕ,x)

)2
.

Note that from the formal point of view, the choice of the constant nondegenerate matrix ĝ, over
which the convolution is performed in the equation (16), is arbitrary. For example, as a matrix ĝ,



PIRT 2021
Journal of Physics: Conference Series 2081 (2021) 012038

IOP Publishing
doi:10.1088/1742-6596/2081/1/012038

12

one could choose any non-degenerate matrix with signature (+,+,+,+) or (+,+,−,−). In this
case, instead of the standard d'Alembert operator, the equation (16) would have an operator
with the corresponding signature of the second derivatives. In particular, for the signature
(+,+,+,+) it would be the Laplace operator in four-dimensional space. This choice obviously
corresponds to a di�erent version of the FMG dynamics, which could be realized in some other
situation than the one that is realized for our Universe.

Regardless of the choice of the matrix gij , the equation (16) is the equation of the dynamics
of the global marker, which can be compared to some equations of classical physics in order to
understand its interpretation from the experimental point of view. First of all, it should be noted
that the reduced general form of the equation (16) is a general and natural consequence of the
original postulate that the FMG is a three-dimensional hypersurface in W4. Because of this, the
equation contains two functional parameters Λ = |A|2 and P = ♢F , connected exclusively with
the height function F :

Λ = |A|2 =
((

∂F(x, t, ϕ)

∂x0

)2

−
3∑

α=1

(
∂F(x, t, ϕ)

∂xα

)2
)∣∣∣∣∣

ϕ=const

, (17)

P = ♢F =
∂2F
∂x02

−
3∑

α=1

∂2F
∂xα2

.

Hence it follows that the geometrodynamics of the FMG is determined by two functions Λ and
P , which must be related to the physical quantities that are measured in the experiment. In fact,
if Λ and P are represented in the form of measurable distributions of some physical parameters
of matter, then the relations (17) can be considered as equations for the fundamental potential
- the height function F . From this point of view, the choice of the matrix ĝ in the form (15) is
only a way to bring such equations for F to a form close to the form of the wave equations of
classical physics. The meaning of this choice lies in the assumption that in the limit when the
functions Λ and P are small, which can apparently be interpreted as the absence of matter in
space, the processes of change in F and ϕ should be are similar to the propagation of waves with
a certain �xed speed c, which coincides with the speed of light.

7. Interpretation of the equations of geometrodynamics
Note that from the point of view of the measurements that we can make as an element of the
FMG, the equations (16) taking into account (17) are not very useful, since we do not have, at
least not yet, information about the ambient spaceW4. Because of this, the equations (17), which
relate to the height function and do not contain dependence on the variable u, are of particular
interest. The function F(x, t, ϕ) itself formally depends on the value of ϕ on the PMH. But this
dependence is purely parametric and does not actually a�ect the functional dependence F(x, t, ϕ)
with respect to x and t. Moreover, if the dependence is known F(x, t, ϕ) with respect to x and
t, then the dependence ϕ(x, t, u) will be determined directly from (8), or from the solution of
the equation (16) or (17) with additional boundary or initial conditions. Thus, to clarify the
dynamics of the PMH, it is necessary to focus on the interpretation of the (17) equations from
the point of view of a physical experiment.

The �rst thing to notice is that the equation:

♢F = P (18)

has an obvious similarity with the equation of vibrations of a thin three-dimensional membrane in
four-dimensional Euclidean space under the action of the "force" P , referred to the unit volume of
the PMH, and applied to the membrane along the u axis, orthogonal to the hyperplane P3 ∈ W4.
Indeed, the equation of vibrations of a thin two-dimensional membrane has a similar form, but
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with the dimension of the coordinate space less than one. For a two-dimensional membrane, the
P function is the ratio of the external pressure applied to the membrane to the density of the
membrane material. As a result, we can interpret the equation (18) as the equation of vibrations
of an elastic three-dimensional membrane V3 in W4, under the action of some "force" P .

Since to calculate the function F(x, t, ϕ), one equation (18) is su�cient in the presence of
boundary and initial conditions, the second equation of the system (17):

Λ =

((
∂F(x, t, ϕ)

∂x0

)2

−
3∑

α=1

(
∂F(x, t, ϕ)

∂xα

)2
)∣∣∣∣∣

ϕ=const

. (19)

must be a consequence of (18). However, there is no simple link between (18) and (19), since
there is no simple link between the functions P and Λ. Such a connection can appear if we use
a formal factorization of these equations, similar to the relations (14) for the function ϕ. This
possibility will be discussed later. For the function Λ there is a formal interpretation as the
Lagrangian of the linear part of the equation (18). However, this interpretation does not make
much physical sense yet.

8. General principles of the dynamics of a physical hypersurface
Interpreting the equation (18) as the equation of vibrations of a three-dimensional membrane in
four-dimensional Euclidean space under the action of the "forces" described by the function P
allows us to analyze the meaning and properties of P from the point of view of known facts. The
�rst important fact that must be taken into account is the ful�llment of the law of conservation of
energy in our Universe on all scales observed today. In particular, this means that the equation
(18) itself should most likely be autonomous. The condition of autonomy guarantees that no
external factors interfere with the dynamics of the system, which, as a rule, lead to a violation
of the laws of conservation of momentum and energy. The latter means that the force acting on
the PMH should depend only on the parameters of the PMH itself and its derivatives:

P = P (F ,F,α,F,α,β, . . .).

In the simplest case, we can assume that the function P (F ,F,α,F,α,β, . . .) explicitly depends only
on the function F itself. In this case, the equation (18) is the nonlinear Klein-Gordon equation,
which occurs in various physical applications. In particular, in the work [16], exact solutions
of the nonlinear Klein-Gordon equations in the class of rivertons were found. The solutions
obtained in this work are multivalued, which seems to be quite useful for using in the TTFF, in
which the multivalued structures of the fundamental hypersurface are associated with baryons
[5].

Similar reasoning can be applied to the function Λ, assuming that the equation (19) must also
be autonomous. In this case, the function Λ must be a function of only F and its derivatives:

Λ = Λ(F ,F,α,F,α,β, . . .).

Unfortunately, until the direct connections of the equations (18) and (19) with experimentally
measurable quantities have not been established, it is di�cult to give any instructions for the
functional choice of P as a function of F and its derivatives. However, we can establish some
useful properties of this function by considering some limiting situations that should be realized
in reality.

As an example of the "simplest" state of pmh, consider the equations for the fundamental
potential corresponding to the situation: P = 0. In this case, the complete equation (16) turns
into an equation of the following form:

♢ϕ =
∂

∂u

(
|A(ϕ,x)|2∂ϕ

∂u

)
.
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Accordingly, the equations (18) and (19) take the following form:

♢F = 0, (20)((
∂F(x, t, ϕ)

∂x0

)2

−
3∑

α=1

(
∂F(x, t, ϕ)

∂xα

)2
)∣∣∣∣∣

ϕ=const

= Λ. (21)

The �rst equation of this system is the equation of free vibrations of a three-dimensional thin
membrane in four-dimensional space. The phase velocity of waves arising due to edge e�ects is
determined by the number c, which is related to the relations (15). This speed in the experiment
is obviously equivalent to the speed of light. The function Λ in this case is some equivalent of
the energy density of such waves, corresponding to each speci�c solution for F . In this case,
such a situation can be correlated with PMH oscillations in the absence of complex topological
structures, which are compared in the TTFF with elementary particles [5].

However, the equality to zero of P is obviously a very special case of possible situations.
Although the set of solutions to the D'Alembert equation (20) contains an extensive subset of
multivalued solutions ([13, 14]) - rivertones, nevertheless, solutions from this set alone can hardly
give something similar Wheeler's handles [5]. However, in order for such a possibility to appear,
there is an extended version of using the results of [13, 14], described in the work [16]. In this last
work, using the theory of rivertons, multivalued solutions of �rst-order quasilinear equations, an
extensive set of multivalued solutions of multidimensional nonlinear Klein-Gordon equations of
general form was constructed. those. equations of the form:

♢F = F (F),

where F (F) - the quite function general.

9. Rivertons and multivalued solutions of equations of geometrodynamics
The idea of constructing solutions of multidimensional nonlinear Klein-Gordon equations using
rivertons is reduced to the following. By rivertons we mean solutions of a system of quasilinear
equations of the following form:

∂ψ

∂xα
= Bα(ψ)

∂ψ

∂t
, α = 1, . . . , n. (22)

The general solution to this system [13, 14] can be written as follows:

H(ψ, t+ U(B,x)) = 0, (23)

where:

U(B,x) =
n∑

α=1

Bα(ψ)x
α.

Simple di�erential consequence (22) is the equation:

∆ψ =
∂

∂t

(
|B|2ψt

)
. (24)

Since the components of the vector �eld B(ψ) are arbitrary functions of ψ, they can be chosen
in such a way that the condition is satis�ed:

|B|2 = c−2, (25)
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where c - constant from relations (16). As a result, the equation (24) becomes the equation
(20). Note that in this case the equation (19) with Λ = 0 will be automatically satis�ed for the
functions ψ. This follows directly from the equations (22) and the choice of the functions B(ψ)
in accordance with (25).

In order to obtain in a similar way the solutions of equations of the (18) type, it is necessary
to consider functions of the following general form as F :

F =W (ψ,ψt, ψtt, . . .), (26)

where ψ - riverton, and W - some di�erentiable function of its arguments, the form of which will
be determined by the functional form of the function P as a function of F and its derivatives.

For simplicity, consider the case F = W (ψ,ψt). Let us introduce additional notation
u = ψt, v = ψtt. Di�erentiate (26) with respect to independent variables xα and t. As a
result, we �nd:

F,α =Wψψ,α +Wuψt,α =WψBαu+Wu
∂

∂t
(Bαu),

F,t =Wψu+Wuut.

using the last relation, we �nd:

F,α = B′
αF (ψ, u) +BαFt.

Where:

F (ψ, u) = u2
∂W

∂u
;

From the last relation, after some transformations ([16]) follows:

∆F −RFtt = R′′uF +Ω2
(
u2F,u − 2uF

)
+R′

(
uF,ψ + F,uut + uFt

)
. (27)

The notation is introduced here:

R =
n∑

α=1

B2
α(ψ), Ω2 =

n∑
α=1

B′2
α (ψ), B′

α =
d

dψ
Bα.

In the case of a special choice R = const = c−2 the equation (27) turns into the equation:

∆F −RFtt = Ω2
(
u2F,u − 2uF

)
,

which turns into the Klein-Gordon equation if the function W (ψ, u) satis�es the equation:

u2F,u − 2uF = u2
∂

∂u

(
u2
∂W

∂u

)
− 2u3

∂W

∂u
= u4

∂2W

∂u2
=

1

Ω2(ψ)
G(W ). (28)

If W (ψ, u) is the solution of this simple di�erential equation, then the function F(x, t) =

W
(
ψ(x, t), ψt(x, t)

)
, where ψ(x, t) - is one of rivertons, is a solution to the nonlinear Klein-

Gordon equation:
∆F − c−2Ftt = G(F)

for an arbitrary choice of the function G(W ). This equation is standalone and can serve as a
variant of the (18) equation. Since the choice of the function G(W ) is not predetermined in
advance, it is possible to select the properties of feasible solutions based on the choice of the
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function G(W ). Note that in [16] more general options for constructing solutions of equations of
the Klein-Gordon type and nonlinear telegraph equations based on the general dependence (26)
were described. Although this approach has not been studied well enough from the point of view
of constructing a general model of FMG dynamics based on the equation (18), nevertheless, in the
absence of direct connections between the FMG geometry parameters and ordinary experimental
data, this approach seems to be quite natural for solving the problems posed. However, solving
such problems is beyond the scope of this article.

10. Equations of the dynamics of fundamental �elds and local markers
The previous constructions are a natural consequence of the principle of materiality and its
embodiment in the form of dynamics of PMH point markers. As shown in the papers [2, 3, 4, 5],
all the basic equations of the dynamics of particles and physical �elds, including electrodynamics,
the theory of gravity and mechanics in the form of a modi�ed Newtonian theory and quantum
mechanics, follow from the equations of the dynamics of local markers. To clarify the role played
by the global marker equation in the TTFF, it is useful to consider the basic principles of deriving
the equations of modern physical theories from the set of marker transfer equations (7). Using
the conclusions [2, 3, 4, 5], we will show that all these equations are, in fact, a consequence of
only the equations (7) in some of their natural interpretation.

The �rst step is to derive the di�erential density conservation equation J = |det
(
∂ea/∂xα

)
|,

where ea = ea(x) - local markers on PMH. Indeed, (7) implies the equation for J :

∂J

∂t
+ div

(
VJ

)
= 0, (29)

where V - vector translating markers �eld with components V α. Since markers should play a
fundamental role in the theory, the TTFF suggests that the conserved density J can be considered
as the mass density of matter ρm, based on the formulas:

ρm = m0JI(e), M = m0

∫
V

JI(|e|)dV, (30)

where the integral is taken over the volume of the coordinate space P3, which is occupied by
the considered element of matter, M is the mass of the material body, and m0 is a certain
dimensional factor. The function I(|e|) is an invariant associated with the metric of the marker
space, which determines the deviations from Newton's law of gravitation of the "dark matter"
type. See [2, 3, 4, 5, 8]. The presence of the conserved density J allows one to introduce into
the theory geometric averaging for any function f(x) according to the rule:

f(t) =
1

µ

∫
V0

f(x)JdV, µ =

∫
V

JI(|e|)dV. (31)

where, like in (30), the integral is taken over the volume of the topological cell V0 ∈ P3. In
particular, you can introduce the average coordinates of a material particle, assuming:

Xα = xα =

∫
V0

xαJdV. (32)

The velocities and accelerations associated with the average coordinates are as follows:

Uα =
dXα

dt
=

∫
V0

V αJdV, (33)

Aα =
d2Xα

dt2
=

∫
V0

(
∂

∂t
V α + V β ∂

∂xβ
V α
)
JdV.
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If we formally represent the transfer �eld of markers V as a set of vortex γ0A and potential ∇χ
parts:

V = −γ0A+∇χ,

where γ0 is a dimensional constant, then the last equation in (33) can be considered as Newton's
equation of the averaged motion of a charged particle in an averaged electromagnetic �eld with
a vector potential A [2]:

d2Xα

dt2
= γ0E− γ0[V ×B]−∇XU + Fq. (34)

Here E and B is average strength of electric and induction of magnetic �elds:

E = −1

c

∂Aα

∂t
− ∂Φ

∂Xα
, B = rotXA,

Fq is a quantum addition to the forces acting on a particle and U(X, t) is an additional potential:

U(x, t) = −1

2
|V|2 − χt − γ0cΦ, (35)

ï¨�presumably playing the role of averaged gravitational forces ( [2]). For a given potential
U(x, t), the ratio (35) can be considered as the Jacobi equations:

χt +
1

2

(
|∇χ|2 + 2γ0(A,∇χ) + γ20 |A|2

)
+ γ0cΦ+ U = 0. (36)

for fuction χ, which in this case is the action function for a particle in an electromagnetic �eld
with potentials Φ andA and in a scalar �eld with potential U . This also implies that the function

Ψ =
√
|J |eiχ/h̄, (37)

where h̄ - Planck's constant, satis�es the Schr?dinger equation

ih̄
∂Ψ

∂t
=

1

2

(
− ih̄∇− γ0A

)2
Ψ+

(
γ0Φ− UG

)
Ψ, (38)

where Φ is the potential of the electric �eld and

UG = U − h̄2

2

∆|J |
|J |

. (39)

Thus, averaging (31) automatically leads to the equations of quantum theory and classical
mechanics in the form of averaged equations of motion with a geometric interpretation of the
wave function (37).

The �eld part of the theory is based on identities connected by local markers ea(x). The
basic principle, according to which equations of fundamental �elds arise in TTFF, is that all
fundamental �elds are functions of the markers themselves and their derivatives. Let ea(x) be
markers as functions of coordinates xα, α = 1, 2, 3 on the hyperplane P3 ∈ W4 distinguished in
the ambient space and time t. The set of values ?of the functions ea(x) can be considered as
some coordinate space E3 with the metric induced by the mapping: P3 → E3. This space E3 will
be called the marker space. Two obvious di�erential identities hold in the marker space:

∂ea

∂ea
= 3,

∂

∂ea

(
ea

|e|3
)
= 4πδ(e), (40)
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where e = (e1, e2, e3) - the radius vector on a Cartesian marker space map, |e|2 = (e1)2+(e2)2+
(e3)2 and δ(e) - Dirac delta function with a carrier at the origin of the Cartesian map E3. After
converting to coordinates on the identities (40) turn into the following equations:

∂

∂xα
gα = 4πGζ(|e|)ρm,

∂

∂xα
Dα = 4πρe, (41)

where the following notation is introduced:

gα =
4πm0G

3
I(|e|)|J |ea∂x

α

∂ea
, Dα =

|J |
|e|3

ea
∂xα

∂ea
,

ρe =
N∑
k=1

εkδ(x− xk), ζ(R) = 1 +
ea

3

∂ ln I(e)

∂ea

The factor G - Newton's constant of gravity, function ρm is mass density given by the ratio
(30), ρe - electric charge density, which is the density of point charges associated with critical
points of the fundamental potential F . See papers [6, 2, 3, 4, 5, 8]. As a result, the identities
(41) take the standard form of the Poisson equations for the gravitational �eld strength g (with
components gα) and Maxwell's �rst equation for the electric induction �eld D (with components
Dα). Another pair of equations is obtained directly from (7) using some transformations, the
details of which can be found in [4, 8]. This pair of equations can be represented in this form:

∂D

∂t
= −rot

(
[D×V]

)
− 4πρeV, (42)

∂g

∂t
= −rot

(
[g ×V]

)
− 4πGζ(R)ρmV. (43)

Here V - markers transfer �eld. The last pair of equations are analogs of the equations of
induction of electromagnetic and gravitational �elds. The other two Maxwell equations actually
relate the magnetic and electric �elds and require the absence of magnetic charges. In this theory,
the magnetic �eld strength looks like this:

H = −1

c
[D×V] +∇ΦH , (44)

where ΦH - an initially arbitrary potential that leaves the equation (42) unchanged, calculated
from the equation of the absence of magnetic charges:

divH = 0.

The equation (43) is the equation of induction of the gravitational �eld, which is similar to
the equation of induction of electromagnetic �elds, which is an extension of Newton's theory of
gravitation, which consists in introducing the gravitational �eld strength and, as a consequence,
the gravimagnetic �eld into the theory of vortex �elds Z = [g×V] +∇Φg with a potential that
also, by analogy with (44), �nd from the equation of the absence of gravimagnetic charges:

divZ = 0.

The entire set of the presented equations forms a complete system of equations for describing
the fundamental electromagnetic and gravitational �elds, which in TTFF turn out to be closely
related, since the �eld strengths D and g di�er only in scalar factors from each other and contain
in their notation the fundamental �eld K:

K = ea
∂xα

∂ea
, D =

|J |
|e|3

K, g =
4πm0G

3
I(|e|)|J |K. (45)
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Thus, from the system (7) all the basic equations of the modern physical picture of the world
follow. In TTFF, this picture is supplemented by a topological interpretation of the electric
charge, which provides an explanation of the charge properties of elementary particles, including
electric and baryon charges.( [2, 5]). There is one �aw in this scheme, which is that for the
function R = |e|, which plays an important role in the theory, there is no equation describing
the variation of this function with time. However, since R, according to (5), is associated with
the fundamental potential F , the missing equation is the equation for F , the role of which is
played by the equation (18) with some interpretation of the function "external pressure".

11. Conclusion
The General Theory of Relativity paved the way for a completely new approach in physics -
the description of the properties of matter and �elds, based on the properties of non-Euclidean
space-time geometry. In fact, thanks to general relativity, concepts such as the theory of the
Grand Uni�cation or the theory of "everything" appeared in physics. However, in the process
of implementing such unifying ideas, a number of problems of the general concept of general
relativity emerged, which served as the basis for many attempts to construct its generalizations
that would solve at least some of these problems. From a mathematical point of view, the whole
concept of general relativity looks quite adequate. Nevertheless, problems, for example, the
energy of the gravitational �eld, deprive general relativity of completeness and do not provide an
opportunity to adequately relate to quantum theory. In this work, it was demonstrated that the
main disadvantage of the path chosen in SRT and GRT to the geometrization of physics is the
endowment of non-material objects with physical properties, in particular, Einstein's space-time
itself. Proceeding from this, the problem of energy seems to be natural and requires a solution
for at least some real theory of matter.

The main conclusion of this work can be an indication that in order to construct a theory that
would correctly include electromagnetic and gravitational �elds, quantum particles with electric
and baryon charges, and even "dark matter", it is necessary to initially involve the principle of
materiality of space. This principle excludes from the theory non-material objects that can be
implicitly endowed with physical properties, which leads to various paradoxes with the outwardly
consistency of the theory from a mathematical point of view.

In addition to formulating the principle of materiality of space, the paper proposes a method
for its general implementation, which would make it possible to initially formulate the geometric
theory in terms of material particles and objects. This approach is closely related to the
TTFF [6, 2, 3, 4, 5, 8], which provides a deeper justi�cation for this theory. In this work, the
TTFF problem of deriving the FMG dynamics equation was formally solved, relying on general
ideas about fundamental and geometric markers. Nevertheless, the theory cannot be considered
complete, since it lacks ideas for a general description of the P function in the geometrodynamics
equation (18) based on experimental data. The problem is that there are no such experimental
data at this time. The paper proposes a way to derive the general form P , relying on the
selection of this function, proceeding from the analysis of solutions to this equation in the class
of rivertones. However, such an analysis is beyond the scope of this work.
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