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Ïðåäëîæåí íîâûé ìåòîä ïîñòðîåíèÿ òî÷íûõ ðåøåíèé êîñìîëîãèè ñêàëÿðíîãî ïîëÿ, îñíîâàííûé íà

ïðåäñòàâëåíèè äèíàìè÷åñêèõ óðàâíåíèé Ýéíøòåéíà�Ôðèäìàíà â âèäå óðàâíåíèÿ Øð¼äèíãåðà. Ýòî

ïðåäñòàâëåíèå ïîçâîëÿåò ñðàâíèâàòü ðåøåíèÿ êâàíòîâî-ìåõàíè÷åñêèõ è êîñìîëîãè÷åñêèõ çàäà÷. Ñ

äðóãîé ñòîðîíû, ýòîò ïîäõîä ïîçâîëÿåò èñïîëüçîâàòü èçâåñòíûå ôîðì-èíâàðèàíòíûå ïðåîáðàçîâàíèÿ

óðàâíåíèÿ Øð¼äèíãåðà äëÿ ãåíåðàöèè òî÷íûõ êîñìîëîãè÷åñêèõ ðåøåíèé. Â êà÷åñòâå ïðèìåðà ïðèìåíåíèÿ

äàííîãî ìåòîäà ðàññìîòðåíî èñïîëüçîâàíèå ïðåîáðàçîâàíèé Äàðáó â êîñìîëîãèè ñî ñêàëÿðíûì ïîëåì.

Ñ äðóãîé ñòîðîíû, ïðåäñòàâëåííûå ìåòîäû ïîçâîëÿþò îáîáùèòü ïîëó÷åííûå ðåøåíèÿ íà ìíîãîïîëåâûå

êîñìîëîãè÷åñêèå ìîäåëè.
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We propose a new method of exact solutions construction for scalar �eld cosmology based on representation of

the Einstein-Friedmann dynamic equations as Schr�odinger-like one. This representation allows one to compare

the solutions of quantum-mechanical and cosmological problems. On the other hand, this approach makes it

possible to use the well-known form-invariant transformations of the Schr�odinger equation to generate exact

cosmological solutions. As an example of the application of this method, the use of the Darboux transformations

in scalar �eld cosmology is considered. On the other hand, the presented methods make it possible to generalize

the obtained solutions to multi-�eld cosmological models.
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Introduction

Investigation of Scalar Field Cosmology (SFC) is closely connected with the development of

in�ationary theory started in the beginning of 1980ies with works by Starobinsky, Guth, Linde and
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Albrecht and Steinhard [1�5]. The �rst analysis of the system of di�erential equations describing

the dynamics of the Friedmann universe �lled with a scalar �eld was performed using approximation

methods. About ten years after the discovery of the in�ationary stage in the evolution of the universe, the

�rst exact solution attracted attention of many scientists. Since that time a great number of methods for

construction of exact solutions in SFC have been proposed and developed. Many of these are described

in the works [6�21].

The equations of cosmological dynamics themselves in in�ationary models with a scalar �eld in the

�at Friedmann universe are written as follows

H2 =
1

3

(
1

2
φ̇2 + V (φ)

)
, (1)

Ḣ = −1

2
φ̇2, (2)

φ̈+ 3Hφ̇ = −V ′(φ). (3)

Here a(t) is the scale factor, H(t) = ȧ(t)/a(t) is the Hubble parameter, φ(t) is a scalar �eld, and

V (φ) is a potential energy (or simply potential as it traditionally described in in�ationary cosmology).

A dot denotes the derivative with respect to the cosmic time t, and a prime denotes the derivative with

respect to the scalar �eld.

It should also be noted that �eld equation (3) is a consequence of two Einstein-Friedman equations

(1)�(2), which completely determine the dynamics of the early universe at the in�ationary stage based

on the General Relativity.

Among the various methods that are used to construct exact solutions of equations (1)�(2), the

method of bringing one of them to the one-dimensional stationary Schr�odinger equation was considered.

To our knowledge, the Schr�odinger representation of the �rst Einstein-Friedmann equation (1) was

proposed for the �rst time by Zhuravlev et al [22]. The method was further developed by A. Yurov with

coauthors in the works [23, 24]. Later Barbosa-Cendejas and Reyes [25] repeated the derivation of the

Schr�odinger equation from the Friedmann equation, and compared solutions in cosmology and quantum

mechanics. In our recent work [26], another approach was considered, based on the representation of the

�rst Einstein-Friedman equation as the Schr�odinger-like equation in terms of a scalar �eld.

In this paper, we consider the representation of the second Einstein-Friedman equation (2) in the

form of the Schr�odinger-like equation and give examples of known and new exact cosmological solutions

obtained by this method. Also, this approach provides a new way of comparing quantum-mechanical

and cosmological problems, as shown by the example of the P�oschl�Teller potential.

Further, we consider the possibility of applying the Darboux transformations within the framework

of the proposed approach. It is shown that one can use these transformations both to generate new

exact solutions from known ones in models with one scalar �eld, and in multi-�eld Chiral Cosmological

Models (CCM) [27�32] as well.

Finally, we generalize the representation of both Einstein-Friedman equations as a one-dimensional

stationary Schr�odinger-like equation, which allows one to compare the solutions obtained by using any

other methods to this approach.

1. Schr�odinger-like representation of second Einstein-Friedmann equation

It is well known that to generate exact solutions of the system (1)�(3) in explicit form, it is su�cient

to �nd solutions of the second Einstein-Friedman equation (2) only.

Now, we consider the one-dimensional Schr�odinger-like equation in terms of the cosmic time

ψ̈ − u(t)ψ = 0, (4)

where ψ = ψ(t) is a some function of time. After the following function change

u(t) = φ̈− 2Ḣ, (5)
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ψ(t) = µ1 exp(φ(t)), (6)

where µ1 6= 0 is the constant, from equation (4) we obtain the second Einstein-Friedmann equation (2)

φ̇2 = −2Ḣ. (7)

The inverse transformations of the equations (5)�(6) give

φ(t) = ln

(
1

µ1
ψ(t)

)
, (8)

H(t) =
1

2

(
ψ̇

ψ
−
∫
u(t)dt+ λ

)
, (9)

where the functions u(t) and ψ(t) are connected by equation (4).

Also, from equations (1)�(2) one has the expression for the potential of a scalar �eld

V (φ(t)) = 3H2 + Ḣ. (10)

Further, we will consider some exact cosmological solutions for some potentials u(t).

1.1. Solutions for u = 0

For the case u(t) = 0, from equation (4) we obtain

ψ(t) = µ1(c1t+ c2), (11)

where c1 and c2 are constants of integration. From (8)�(9) and (10) one has

φ(t) = ln(c1t+ c2), (12)

H(t) =
c1λt+ c2λ+ c1
2(c1t+ c2)

, (13)

a(t) = a0e
1
2λt(c1t+ c2)

1/2, (14)

V (φ) =
c21
4
e−2φ +

3c1λ

2
e−φ +

3

4
λ2. (15)

These solutions correspond to exponential power-law in�ation [7]. For c1 = 0 we have the de Sitter

solution with φ = ln(c2) = const, H = λ
2 = const and V = 3

4λ
2 = const as the partial solution.

1.2. Solutions for u = const 6= 0

For the case u(t) = A = const, from equation (4) we obtain

ψ(t) = µ1

(
c1e
√
At + c2e

−
√
At
)
, (16)

where c1 and c2 are the constants of integration. Now, we note the growing and decaying solutions

ψ1,2(t) = exp
(
±
√
At+ φ0

)
, φ0 = const. (17)

From (8)�(9) and (10) we obtain exact solutions for chaotic in�ation [5, 19]

φ(t) = ±
√
A t+ φ0, (18)

H(t) =
1

2

(
λ±
√
A−At

)
, (19)

a(t) = a0 exp

{
1

2

[(
λ±
√
A )t− At2

2

]}
, (20)

V (φ) =
[
λ±
√
A±
√
A (φ0 − φ)

]2
− 1

2
A. (21)

The other wave functions derived from the conditions c1 = c2, c1 = −c2 don't lead to physical

in�ationary potentials.
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1.3. Solutions for the P�oschl�Teller quantum mechanical potential

Now, we consider the following wave function

ψ(t) = µ1 tanh(αt), (22)

where α is an arbitrary constant. From equation (4) we obtain the quantum mechanical P�oschl�Teller

potential [33]

u(t) = − 2α2

cosh2(αt)
. (23)

From (8)�(9) and (10) for λ = 0 one has the corresponding cosmological model

φ(t) = ln(tanh(αt)), (24)

H(t) = α cot(2αt), (25)

a(t) = a0[sinh(2αt)]
1/2, (26)

V (φ) = α2[cosh2(φ) + 2]. (27)

Similar solutions for the potential (27) were considered earlier in [11, 13]. Hence, we have a

connection between the cosmological and quantum mechanical problems for the case considered.

1.4. Generalization of in�ationary models with polynomial potentials for the small scalar
�eld

Now, we consider the wave function

ψ(t) = µ1 exp

{
1

C
arcsin

[
exp

(
−2AC2(t+ c1)

)]}
, (28)

where A and C are arbitrary constants. From equations (4)�(10) we obtain the exact solutions

H(t) =
A

2
ln
[
1 + exp

(
−4AC2(t+ c1)

)]
+B, (29)

φ(t) =
1

C
arcsin

[
exp

(
−2AC2(t+ c1)

)]
, (30)

a(t) = a0 exp

(
1

8C2

{
8BC2t+ f

[
1 + exp(−4AC2(t+ c1))

]})
, (31)

V (φ) = 3 (A ln[cosh(Cφ)] +B)
2 − 2A2C2 tanh2(Cφ), (32)

where B is the constant of integration and the function f(ξ) is de�ned as

f(ξ) =

∫ ξ

1

ln(ξ)

1− ξ
dξ. (33)

For the small scalar �eld φ� 1 from (32) we obtain the double-well potential

V (φ) =

(
−1

2
ABC4 +

3

4
A2C4 +

4

3
A2C6

)
φ4 +(

−2A2C4 + 3ABC2
)
φ2 + 3B2 +O(φ6), (34)

Therefore, for di�erent choices of the constants A, B and C we have the di�erent potentials as the

partial cases. For the case B = 2
3AC

2 we have

V (φ) = A2C4

(
C2 +

3

4

)
φ4 +O(φ6), (35)
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For the case B = 8
3AC

2 + 3
2A we obtain

V (φ) = 3AC2

(
2C2 +

3

2

)
φ2 +O(φ6), (36)

The case B = − 1
2A and C = ±

√
3i
2 corresponds to the potential

V (φ) = 3B2 +O(φ6). (37)

The evolution of the remaining parameters of these models is determined by substitution of the

constants in solutions (29)�(31). Thus, we have new cosmological solutions for known potentials which

are considered in [3�5] with negligible corrections for the small scalar �eld.

2. Darboux class of exact cosmological solutions

One of the possible form-invariant transformations of the one-dimensional stationary Schr�odinger

equation is the Darboux transformations [34�36]. It should be noted that the application of such a

transformations to the �rst Einstein-Friedmann equation, written in di�erent forms, was discussed in

[23, 26]. In this case, we will consider the application of the Darboux transformations to the second

Einstein-Friedman equation to generate new exact cosmological solutions from known ones and for

conversion of exact solutions from the case of single-�eld models to multi-�eld Chiral Cosmological

Models (CCM) as well.

2.1. Single �eld cosmological models

Now, we consider the one-dimensional Schr�odinger equation in terms of the cosmic time

¨̃
ψ − ũ(t)ψ̃ = 0, (38)

where ψ̃ = ψ̃(t) is a some function of time. After the following function change

ũ(t) = ϕ̈− 2 ˙̃H, (39)

ψ̃(t) = µ2 exp(ϕ(t)), (40)

where µ2 6= 0 is the constant, from equation (4) we obtain the second Einstein-Friedmann equation (2)

ϕ̇2 = −2 ˙̃H. (41)

We will consider ψ and ψ̃ as a partial solutions of the equations (4) and (38). The connection

between this solutions can be obtained from the Darboux transformations

ũ = u− 2
d2

dt2
ln(f(t)), (42)

ψ̃ = ψ̇ − ψ
{
d

dt
ln(f(t))

}
, (43)

where f(t) is the general solution of the equation (4)

f̈ − u(t)f = 0. (44)

Therefore, based on these transformations, one can obtain the connection between the exact

solutions of the equation (7) and (41) in the following form

ϕ(t) =
√
n [φ(t) + χ(t)] + ϕ0, (45)

H̃(t) = n

[
H(t) +

ḟ

f
+

1

2
χ̇

]
+ λ, (46)

χ(t) = ln

[
µ1

µ2

(
φ̇− ḟ

f

)]
, (47)

f̈ −
(
φ̈− 2Ḣ

)
f = 0, (48)
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where n, λ and ϕ0 are some constants.

The general solution f = ψ(1)+ψ(2) of the equation (48) can be found on the basis of the expression

for u = φ̈− 2Ḣ and known particular solution ψ(1)(t) = µ1 exp(φ(t)). For the case
µ1

µ2

(
φ̇− ḟ

f

)
> 0 one

has a canonical �eld ϕ(t) for n > 0 and phantom one for n < 0. For µ1

µ2

(
φ̇− ḟ

f

)
< 0 we have a complex

scalar �eld ϕ(t) in which real and imaginary components depend on the sign of n.

Also, one can de�ne the new potential as

Ṽ (ϕ(t)) = 3H̃2 + ˙̃H. (49)

Thus, from known solutions φ and H of equation (7) one can obtain the new exact solutions ϕ, H̃ and

Ṽ from expressions (45)�(49).

2.2. Two �eld cosmological models

As one can see, the function χ(t) can be considered as the additional scalar �eld. After substituting

the scalar �eld

ϕ(t) =
√
n [φ(t) + χ(t)] + ϕ0 (50)

into the Einsten-Friedmann equations (1)�(2) we obtain

3H̃2 =
n

2
φ̇2 + nφ̇χ̇+

n

2
χ̇2 + V (φ, χ), (51)

− ˙̃H =
n

2
φ̇2 + nφ̇χ̇+

n

2
χ̇2. (52)

After substituting the �eld (50) into the �eld equation (3) one has

√
n(φ̈+ χ̈) + 3

√
nH̃(φ̇+ χ̇) = −dV (ϕ)

dϕ
=
dV

dt

dt

dϕ
=

= −
(
∂V (φ, χ)

∂φ
φ̇+

∂V (φ, χ)

∂χ
χ̇

)
1

√
n(φ̇+ χ̇)

. (53)

n(φ̈+ χ̈)(φ̇+ χ̇) + 3nH̃(φ̇+ χ̇)2 = −∂V (φ, χ)

∂φ
φ̇− ∂V (φ, χ)

∂χ
χ̇ . (54)

φ̈φ̇+ χ̈φ̇+ 3H̃(φ̇2 + χ̇φ̇) + φ̈χ̇+ χ̈χ̇+ 3H̃(χ̇2 + φ̇χ̇) =

= − 1

n

(
∂V (φ, χ)

∂φ
φ̇+

∂V (φ, χ)

∂χ
χ̇

)
. (55)

Therefore, the �eld equation (55) can be represented as two ones in the following form

φ̈+ 3H̃(φ̇+ χ̇) + χ̈ = − 1

n

∂V (φ, χ)

∂φ
, (56)

χ̈+ 3H̃(φ̇+ χ̇) + φ̈ = − 1

n

∂V (φ, χ)

∂χ
. (57)

Such a model with dynamic equations (51)�(52) and (56)�(57) containing a mixed kinetic terms was

considered earlier in the paper [37] for n = 1.

Also, we note, that this system has two independent equations only, because the equation (53) and

(56)�(57) can be obtained from equations (51)�(52).

Thus, based on the transformations (45)�(48) one can generate the exact cosmological solutions for

this system of equations from known φ and H following from (7).
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2.3. Multi-�eld cosmological models

The previous models with mixed kinetic terms is the partial case of the chiral cosmological models

(CCM) with K scalar �elds φA (φ̃ = φ0, φ1, φ2..., φK) (K = 2) based on the action [27�32]

S =

∫
d4x
√
−g
[
1

2
R− 1

2
hAB∂µφ

A∂νφ
Bgµν − V (φ̃)

]
, (58)

where the hAB = nÎ, and Î is the unit matrix.

For the CCM with K-�elds, in the spatially �at Friedmann�Robertson�Walker metric, from the

action (58), one has the following dynamic equations

3H̃2 =
1

2
hABφ̇

Aφ̇B + V (φ̃), (59)

− ˙̃H =
1

2
hABφ̇

Aφ̇B , (60)

hCB(φ̈
B + 3H̃φ̇B) + V,C = 0. (61)

We start from the equation for one scalar �eld

− 2Ḣ0 = φ̇0φ̇0 =
(
φ̇0
)2
. (62)

The �rst way to construct the exact solutions from known φ0 and H0 is to represent the �eld χ as the

sum of the other �elds χ = φ1 + φ2 + ...φN .

Thus, from the transformations (45)�(48), one has

φ̃(t) =
√
n

[
φ0(t) +

N∑
B=1

φB

]
+ const, (63)

H̃(t) = n

[
H0(t) +

ḟ

f
+

1

2

(
d

dt

N∑
B=1

φB

)]
+ λ, (64)

N∑
B=1

φB = ln

[
µ0

µ1

(
φ̇0 − ḟ

f

)]
, (65)

f̈ −
(
φ̈0 − 2Ḣ0

)
f = 0, (66)

V (φ̃(t)) = 3H̃2 + ˙̃H, (67)

where one can consider any scalar �elds φB corresponding to the condition (65).

The second way is to use the Darboux transformation K-times. Each Darboux transformation of

the equation (60) gives one additional �eld, therefore one has the following equations

φ̃(t) =
√
n

K∑
A=0

[
φA(t) + φA+1(t)

]
+ const, (68)

H̃(t) = n

K∑
A=0

[
HA(t) +

ḟA

fA
+

1

2
φ̇A+1

]
+ λ, (69)

φA+1(t) = ln

[
µA
µA+1

(
φ̇A − ḟA

fA

)]
, (70)

f̈A −
(
φ̈A − 2ḢA

)
fA = 0, (71)

V (φ̃(t)) = 3H̃2 + ˙̃H. (72)

One can also combine these approaches to construct exact cosmological solutions for multi-�eld

Chiral Cosmological Models.
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3. Generalized Schr�odinger-like representation of cosmological dynamic equations

Now, we combine the method under consideration and the other approach which was considered

earlier in [26]. The basis of this approach is representation of a �rst Einstein-Friedmann as Schr�odinger-

like one with corresponding dynamic equations (1)�(3) in following form [26][
− d

2

dφ2
+ U(φ)

]
ψ(φ) = 0, (73)

V ′φ = 6

[
1− 2

3
U(φ)

]
ψψ′φ, (74)

φ̇ = −2ψ′φ, (75)

where ψ(φ) ≡ H(φ), therefore, in this case, the Hubble parameter playing role a wave function in

equation (73).

Thus, on the basis of equations (4)�(9) and (73)�(75) we can conclude that for cosmological

in�ationary models containing a scalar �eld and based on Einstein gravity in a �at four-dimensional

Friedmann-Robertson-Walker space-time, the exact solutions of the system of dynamical equations (1)�

(3) obtained by using any methods, can also be obtained based on the Schr�odinger-like equation

d2ψ(x)

dx2
− U(x)ψ(x) = 0, (76)

for which the case x ≡ φ, U(x) = U(φ) corresponds to the relations

V ′φ = 6

[
1− 2

3
U(φ)

]
ψψ′φ, (77)

φ̇ = −2ψ′φ, H(φ) = ψ(φ), (78)

and the case x ≡ t, U(x) = u(t) correspond to the relations

Ḣ =
1

2

[
d

dt

(
ψ̇

ψ

)
− u(t)

]
, (79)

φ(t) = ln(ψ(t)), V (φ(t)) = 3H2 + Ḣ. (80)

It should also be noted that some solutions of equation (76) correspond to di�erent solutions of

equations (77)�(78) and (79)�(80).

Thus, one can investigate the exactly solvable cosmological models on the basis of the Schr�odinger-

type equation only with additional relations between the parameters of the models. This approach gives

two alternative ways to connect the quantum mechanical and cosmological problems as well.

We also note, that based on the results presented in [38�43], one can use the proposed approach for

constructing exact solutions for cosmological in�ationary models with modi�ed gravity theories, namely,

with Einstein-Gauss-Bonnet gravity and scalar-tensor gravity as well by the functional and parametric

connections between these types of gravity theories and General Relativity in Friedmann universe.

Conclusion

In this paper we considered an application of the Schr�odinger-type equation to construction exact

cosmological solutions in in�ationary models with scalar �eld based on General Relativity. The �rst

step in this analysis was a new representation of the second Einstein-Friedmann equation as a one-

dimensional stationary Schr�odinger-type equation. This representation made it possible to obtain exact

cosmological solutions in explicit form. Also, this approach allows us to compare quantum-mechanical

and cosmological problems in a new way.

The second step was to use the Darboux transformations to generate new exact solutions from the

known ones. It was also shown that these transformations allow the transition from models with one
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scalar �eld to Chiral Cosmological Models with several �elds. This approach di�ers from that proposed

in work [44], in which such a transition was carried out due to the speci�c choice of the target space

metric.

Finally, we generalized the representation of both Einstein-Friedman equations as the Schr�odinger

equation with di�erent conditions for various variables (scalar �eld or cosmic time). Such a representation

of background dynamics equations (1)�(3) is quite convenient since, on the one hand, any exact solutions

for an unperturbed scalar �eld can be obtained in the presented way, on the other hand, the evolution

equations of scalar vk and tensor uk cosmological perturbations in linear order of perturbations theory

are also can be written as the Schr�odinger-type equations, namely [45,46]

d2vk
dη2

+

(
k2 − 1

z

d2z

dη2

)
vk = 0, (81)

d2uk
dη2

+

(
k2 − 1

a

d2a

dη2

)
uk = 0, (82)

where z = aφ̇/H, k is the wave number and η =
∫
dt/a is the conformal time.

Thus, the same task, from a mathematical point of view, corresponds to two di�erent levels of

analysis of cosmological models that leads to the assertion that the whole problem of constructing

models of the early universe with a scalar �eld on the basis of General Relativity can be reduced to an

analyzing of same type equations (76) and (81)�(82).

The prospect of using an approach based on the application of the Schr�odinger equation to the

analysis of cosmological models consists in developing existing and constructing new e�ective methods

for exact and approximate solutions of this type of equation or developing e�ective algorithms for

its numerical solutions, which will allow to comprehensively solve the problem of constructing veri�able

models of the early universe corresponding to observational constraints on the parameters of cosmological

perturbations [47]. The development of this approach is the task of our following investigations in this

direction.
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