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Introduction

The fact that Universe expansion is accelerating at the present time is confirmed by various
observations such as measurements from supernovae [1], [2], cosmic microwave background (CMB)
radiation [3], [4], [5], large scale structure [6], baryon acoustic oscillation [7] and weak lensing [8]. One of
the way to explain the observed acceleration of the Universe is to develop alternative (modified) theories
of gravity which can be reduced to GR on some scales but can lead to Universe acceleration on very
large scales. For recent reviews of modified theories of gravity, see, for instance, [9], [10], [11] and the
fundamental work [12].

The growing interest to modified theory of gravity is due to detection of gravitational waves are
emitted by the system of two black holes (BHs) which allows to test extensions of the GR theory [13].
Therefore, besides of cosmological applications of modified gravity theories, it is of interest to study
spherically symmetric solutions as possible resulting BH which generates gravitational waves, may be
with other characteristics then in GR. In our present investigation we analyze spherically symmetric
solutions in the theory of gravity with high-order corrections to scalar curvature.

Modifications of GR that include higher-order curvature corrections to the Einstein-Hilbert action
have a natural explanation, related to taking into account quantum effects in the low-energy limit
of string theory, superstrings, and supergravity, needed for the construction of a quantum theory of
gravity [14].

We can mention that a prominent example of application of quantum corrections to GR, with
derivatives up to fourth order, has been demonstrated by A. Starobinsky [15] in cosmology. It was
shown that such corrections may control an accelerated expansion of the Universe at its early stage of
evolution (inflation).

This kind of models has been developed towards considering 6th-order corrections in theories of
gravity of the kind R + aR? + yROR, where o and 7 are some constants, and the additional terms
that modify the Einstein theory were, with the aid of conformal transformations of the metric, put into
correspondence to certain effective scalar fields [16]- [20], which led to a two-field treatment of such
models. Also, in [21] the correction RCIR was treated as a small perturbation, and its influence on the
parameters of cosmological perturbations was studied.

Inclusion of higher derivatives to modified theories of gravity is also caused by the necessity of
introducing such corrections at renormalization of the stress-energy tensors of quantum fields in the
framework of the semiclassical approach to gravity [22].

In the article [23] it was shown the way how to reduce theory of gravity which contain in the action
the Ricci scalar and its first and second derivatives to GR minimally coupled to few scalar fields. For
special choices of functional dependence f(R,(VR)? JR) it is possible to reduce the theory to chiral
cosmological model. One such example and its application in cosmology is demonstrated in [25], [26], [27].

In the work [27] the study of the model, using the technique described in [23], [24], was continue.
There were carried out a similar transition to a scalar-tensor theory by introducing Lagrangian
multipliers and the arising auxiliary fields. Using a conformal transformation from the Jordan frame to
the Einstein one there were obtained that the model can be represented as a two-component nonlinear
sigma model with an interaction potential. Such model is named as a chiral cosmological model (CCM)
for consideration in cosmology. Because in our present work we deal with gravitation in spherically
symmetric spacetime, not in cosmology, the model with the action

S = /\/TQd“x (211 - %hAB(LP)‘Pﬁ‘PﬁgW - W(‘P>> ’ M)

we will call Chiral Self-Gravitating Model (CSGM). Tt is clear that CCM is the case of CSGM in
cosmological spaces. Thus, the main goal of our investigation is to find conditions to have exact static,
spherically symmetric solutions in the CSGM.
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The article is organised as follow. In Sec. 2 we represent the action of the f(R) gravity with kinetic
curvature scalar in Einstein’s frame and give connection of the model to CSGM. The Sec. 2 is devoted
to tensor equations of CSGM in metric spacetime which represented in Sec. 3 for spherically symmetric
spacetime in harmonic coordinates. Sec. 4 contains the gravitation and fields equation in spherically
symmetric spacetime in harmonic coordinate. In Sec. 5 we consider the case of scaling transformation
when the model transforms from Jordan to Einstein frame and the representative function f; of the
scalar field ¢ is chosen as GR analog, namely fi(¢) = ¢/2. For this case it was found the three classes
of solutions for gravitational field and demonstrated the method of determination of kinetic function
X (¢) corresponding to known scalar field dependence on analog to radial coordinate w. Sec. 6 devoted to
investigation of the model subject to special relation (ansatz) between metric components. Three classes
of solutions are represented as well. In Conclusion we discuss obtained results and future investigations.

1. The model in Einstein frame

In the work [23] the authors consider the most general form of f(R) gravity with higher derivatives
of first and second order with respect to Ricci scalar. Such a theory of gravity is described by the action

Syon = / dzy/=g f (R,(VR)2,0R) | (2)

where (VR)? = ¢"*V,RV,R and OR = V,V*R.
The truncated model with the action

Sirm = / dr\/~g | (R.(VR)?), (3)

where
f(R,(VR)*) = fi(R) + X(R)V,RV"R. (4)
have been studied for cosmological applications in [25], [26], [27]. In (4) and hereafter f1(R) and X (R)
are C' functions of scalar curvature.
The model (3)-(4) can be transformed to Einstein scalar fields gravity [23], [27] with the action

Rp 1 ,, 1 _ 1, _
SEfRR’ = /d49€\/ —9E (2 - 59% X,uX,v + Zfl(@e 22/ i(be 2/3x

1, _ v
+§Xe 2/3x gl ¢7#¢,y>. (5)

where subscript ”E” denotes the Einstein’s frame. In (5) a new scalar field have been introduced by
the relation A\ = exp(,/2/3X), to obtain a canonical form for the scalar field x in the action with
A-field. Non-minimal coupling to gravity via scalar field A connected with conformal transformation
gfu = ng,{y as 22 = 2)\. The second scalar field ¢ takes the nonlinearity of fi(R) and in some sense
can be in correspondence with dependence f1(¢) [23], [27].

The action Sgyrr (5) can be presented in the form of a chiral cosmological model [28] with two
chiral fields o' = x, ©? = ¢, and 2D metric of the target space

ds? = dy? — e VXX (¢)dg?. (6)
Also it needs to include in the model the interaction potential
1 ,
W= 3 VIR (g — e VAN g)). (7)

Because in our present work we deal with gravitation in spherically symmetric spacetime, not
in cosmology, the model (5) and similar ones are nothing but self-gravitating non-linear sigma model
with the potential of interaction. For the sake of brevity we will refers to this type models as Chiral
Self-Gravitating Model (CSGM). It is clear that CCM is the case of CSGM in cosmological spaces.

In the next section we will represent basic equation of CSGM.
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2. Chiral Self-Gravitating Model

The action of CSGM as the action of the self-gravitating nonlinear sigma model with the potential
of (self)interactions W (y) [29], [30] reads:

R 1
Scsam = /v—gd4w <2ﬁ - ghAB(SO)WﬁLSDEQW - W(@)) ) (8)

where R being a scalar curvature of a Riemannian manifold with the metric g,,(z),  — Einstein

gravitational constant, ¢ = (¢',...,o") being a multiplett of the chiral fields (we use a notation
A

(pjz = 0 = %xu ), hap being the metric of the target space (the chiral space) with the line element

ds®> = hap(p)dp?tdp?, A,B,...=1,N. (9)
The energy-momentum tensor for the model (8) reads
1 «
Ty = hape’ 0% — guv <2<pji<p§§g Phap + W(@)) : (10)
The Einstein equation can be represented in the form

R, = %{hABSDfL(P,B; + g;wW((P)} (11)

which simplify the derivation of gravitational dynamic equations.
Varying the action ( ) with respect to ¢, one can derive the dynamic equations of the chiral fields

10h

A BC C B _

\/— u(v ghagg"e ) 9 DA ‘p,u‘P,ugw —Wa=0, (12)
where W 4 = %}Z. Considering the action (8) in the framework of cosmological spaces, we arrive to a

chiral cosmological model [28], [29], [30], [31], [32], [33].

3. CSGM in spherically symmetric spacetime

The standard representation of the spherically symmetric spacetime without gauge specification
is [34]

ds? = —e?Wap? 4 AWy ? 4 28 (d6? + sin® Odp?) (13)
Let us choose the harmonic coordinates where we have the connection between metric function of
the form
A=20+v (14)
Einstein equations (11) can be derived based on components of Ricci tensor and they are:
1
eI = s VI (g VN (9)) (15)
_ 25// _ V” + 2(/8/)2 +4ﬁ/yl —
1
- <h11(x')2 e VIR (G)(9)7 + T eV (g - ev2/3><f1<¢>)) .9
1
L= 8" exp [-28 — 20] = 5ee L VA (6 — e VR fy () (17)
Chiral fields equations after substitution of metric components and the potential yield
iy’ = e VR (@) - 0 |- LoVt o) <o
V6 26" f
1
fX o' X" + X¢(¢) + X(¢)9" + *64’3”” (1 - 6_\/%Xf1,¢) = 0. (19)

From equations (15) and (17) one can obtain the relatlon which make restriction on the metric

components
ﬁ” o V// — 62’6+2y. (20)
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4. The case of scaling transformation

Following by special suggestion in cosmology [24], [27] let us study the case when the scalar field
x is equal to special constant y = —\/g In2. This value of x corresponded to identical conformal

transformation with Q2 = 1.
The gravitational and chiral field equations will take the following form

e W = —52(6/2 — 1(9)), (21)

— 28" =" +2(8)? + 48" = 3 (=2X(¢)(¢)* + €T (¢/2 - f1(9))) , (22)
1= p"e™ 7% = 5®(¢/2 - f1(9)), (23)

—2X(¢)(¢')* — T (—p +4f1(¢)) = 0, (24)

2X()¢" + X5 (¢')? + 2 (1/2 — f14) = 0. (25)

The equation (24) may be considered as additional one, for the model with one field ¢ this equation

will not appear (no variation on x).

4.1. Case f1(¢) = ¢/2

Such suggestion bring the model close to GR, if we additionally set X(¢) = 0. For the case
f1(¢) = ¢/2 we have the system of equations

V=0, v=Au+ Ay, A, Ay — const., (26)
— 28"+ 2(8) + 48 Ay =  (~2X(6)(9))?), @7)
1— 61/67257214171*2142 — O7 (28)
2X(¢)¢" + Xj(¢')* = 0. (29)

4.1.1 The solutions of the auxiliary equation
Let us study solutions of the equation

Y (u) = ae®, a,b— const., (30)

which we will use for special values of parameters later on.
The first integral of (30) is

() = 5™ + C. (31)

There are three possibilities according with C; value.

00120

The solution is

y(u) = _% In (i\/@(u - u*)> , (32)

where the integration constant u, may change the sign of the argument (u — w.).
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¢« O =p2>0

The solution for this case is

1 a 1 w
y(u) = Fuu — 3 In (_b + rlﬂezb“ > . (33)

From here we set u = u — u, to simplify the expressions.

y(w) = _% In (\/Ecos(aabu)> ' (34)

e O =-0%2<0

The solution is

4.1.2 Solutions of the model

The equation (28) can be reduced to

y" = 2eY (35)
by the substitution
y=20+2A1u+ 2A,. (36)
Thus we have three solutions for y(u) by setting in the solutions above a =2, b= 1/2.
e C1=0
The solution is
y(u) = —2In(u). (37)
From here one can find
B(u) = —In(u) — Aju — As. (38)
Equation (27) gives
#X(9)(¢)* = A7 (39)

Thus we can represent class of solutions by giving ¢ = ¢(u).

In literature [34] one can find the following type of solutions for the scalar field
$1(u) = i + bu, Ba(u) = B tanh(A,u) (40)

and

VR
¢3(u) = D arctan % + ¢y, D,p= const. (41)

Here the letters with lower star mean constant. Note that the function fi(¢) can be easy restored
for given ¢ as
1
11(6) = 59.
Note that the potential for this case is equal to zero and we deal with massless scalar field.

It is easy to define the function X (¢) for each case. The sign of kinetic function X (¢) corresponds
to type of the scalar field: canonical, if X < 0, and phantom, if X > 0. Thus we have corresponding
to the scalar fields kinetic functions:

A2
Xi1(¢1) = %0412 = const. (42)
A23? _
Xa(2) = 210 (82— 63(w) . (13)

X3(¢3) = i%j tan? <W> <1 + tan? (W)) . (44)
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e C1=p>>0
The solution for this case is
1 5
y(u)=F u—ln<—2+e““>. 45
( ) 2 4[12 ( )
From here one can find
1 1
,B(U) = 5 [:F,uu —1In <—2 + WeQ#u)] — Alu — AQ. (46)
Equation (27) gives
2
I
X)) = - (4 - 22) (47)

The solutions for kinetic function X (¢) are

(%)

Xi1(¢1) = o = const. (48)
43— ) 2 _
Xo(p2) = (1%;) (B2 — ¢3(u)) ? (49)
A3 - 1) p? _ _
X3(¢3) = ( & %Dz> tan? <¢3(U)D (b*) (1 + tan? (¢3(u;) ¢*>> . (50)
e C1=—-0a?’<0
The solution is
1
y(u) = 2In <2COS C()‘au)> (51)
2
From here one can find
1 o
B(u) =1n <QCOS (a2u>> —Aju— As (52)
Equation (27) gives
2
AX(@)D) =T + 43 (53)
The solutions for kinetic function X (¢) are
A+
Xi1(¢) = (1%04;4) = const. (54)
A3+ 20 B2 _
Xo(p2) = <1%;> (B2 = ¢5(u)) 27 (55)
A2 4 22 »? B 3
Xs(¢3) = 7( : %Dz> tan” <¢3(u;) (b*) (1 + tan? (QSB(U;) gb*)) : (56)

It should be stressed that equation (29) is satisfied when X (¢)(¢')? = const. Indeed, taking the
derivative with rrespect to u from both part of equations (39),(47) and (53) one can find X'(¢')® =
—2X¢'¢" and equation (29) is automatically satisfied.

Thus we can state that X (¢)(¢')? = const. with (26), (38), (46) and (52) give us three solutions.
Therefore for each given dependence of the scalar field ¢ as function on u one can define the kinetic
function X (¢) which holds the solution. Examples of such solutions we described above.
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5. Ansatz 3 = mv
Choosing the relation between metric functions
B =mv, m = const. (57)
we can solve the equation (20) which takes the following form

1
V= m‘fQV(mH)' (58)

So we can use the solutions of auxiliary equation (30) with y = v and
a=—— b=m+1, m#1, m#*-1L
With the ansatz (57) and choosing the fi(¢) as

f1(9) = /2 + Kaf2(6), Kz = const., (59)

the gravitational and field equations take the following form

e PRI = 30Ky fo(9), (60)

= 2m+ 1"+ 2m(m + () = % (~2X(6)(6)? = 22V Ky £(9)) (61)
L e = e G (), (62)

2X(0)0" + Xp(¢')? = 2TV Ky o 5 = 0. (63)

Taking into account (58) equation (60) leads to

1

Kol 1) e 2y, (64)

fa(9) =

Substitution (64) into (62) gives the identity. Also substitution (64) into (61) leads to

L2ty g, x(6)(8)2. (65)

—(2m 4+ )" +2m(m +2)(V)? + —

Thus we can find the dependence fo = fo(é(u)) = fo(u) from (64) using known the solutions of
equation (58) on the basis of auxiliary equation solutions (4.1.1).
We can obtain the general form for the combination X (¢)(¢)? if we insert v from (58) and using

the first integral of (58)
1

2 _ 2(m+1)v
v oo 16 + C (66)
into equation (61). The result is
2
{mﬁ 1] 20T g (m 4 2)C = ~252X (8)(8))2. (67)

Let us note that we can not obtain the constant combination X (¢)(¢')? = const. for real m. Thus
the case considered in previous section is not compatible with ansatz approach.
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5.1. The solution C; =0

We may consider two branches of solution in this case. Namely

1 m+1

vi(u) = —mln (— m_l(u—u*)>, U < Us, (68)
1 m+1

Vg(u):—m+1ln< m_l(u—u*)>, U > Uy, (69)

where u, is an integration constant.

From (21) we obtain
1

TR =T e =, (70)

fa(¢) =

Substituting the solution (68) and (69) in (70) one can find

m

2(6) = Gela(m =) | (25 ) - wp?] T (71)

m—1

Substituting the solution (68) and (69) in (67) one can find

X6 = ~ g (72)

Ones again, let us define the kinetic function for scalar field (40) and (41).

2m

X = gm0 "
_ 2m2
M) = o + (B2 — 69 (tanh (60/3) "
Here tanh ™! z := arctanh x.
B _2mtan2((¢3 — ¢4)/D)
Xs(93) = 23¢(m +1)2D2p2 (75)
Corresponding solutions for fi(¢) are
folon) = Gefa(m = 1) [T () T (70
Fa(d) = (ea(m — 1)) [:fﬂ " (/\1 tanh ™! (@ﬁ(“))) - (77)
Falo0) = GeRa(m =) [T con o) - 0] T (7®)

From the presentation (59) it is clear that the function f2(¢) gives, in some sense, the deviation
from GR. Thus we can see from (76)-(78) various functional possible addition, keeping in mind exchange
¢ — R.
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5.2. The solution C; = u? > 0

The solution

2 22 2
1 2u +2|M|\/m27 +
1 ’ ! 2= emty, (79)

U— Uy = n
T+ iyl

must be inversed in order to find the solution for v(u). From (79) one can obtain

1 m+1 1,
— _ 1 —_e2u(mtu )
ven m+1n<m—1+,u2€ (80)

Then from (67) we find

] (P (u)
W_l(“2+EWU

m2—1

2m

22X (9)(&))? = — [ o oPm(m + 2), (81)

where

Ey(u) = eXm e,

Thus we can state that for each given ¢(u) # const. there are exist X (¢), obtained from (81) and
which gives the exact solution with

2m

1

RO(0) = Sy (m;_ _ N2E1(U)> - 2)

Inverting the dependence ¢ on u as u(¢) the dependence fo on ¢ will be restored. The kinetic
function X (¢) can be defined by algorithm described in Sec. 5.2

5.3. The solution C; = —a? < 0
The solution

1 1
U — Uy = ——  arctan — , R = €(m+1)u, 83
:F a<m + 1) 22 + a2 ( )

m2—1

must be inversed in order to find the solution for v(u). From (83) one can obtain

1 (m+1)a? 9
v(u) = e [ m=1) (1 + tan®(a(m + l)u))} . (84)
We can obtain fo(¢(u)) from (64)
f2(6(w)) = [a2(m — 1) (1 £ tan?(a(m + 1)u))] "™ (seka(m — 1)) 7" (85)
From (67) one can find
25X (¢)(¢')? = —a*2m(m® — 1) [1 + tan®(a(m + 1)u)]2 —2a®m(m + 2). (86)

Inverting the dependence ¢ on u as u(¢) the dependence fy on ¢ will be restored. The kinetic
function X (¢) can be defined by algorithm described in Sec. 5.2
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Conclusion

In this paper we presented an analysis of non-linear self-gravitating sigma model with the potential
of interaction (chiral self-gravitating model) of f(R) gravity with a kinetic curvature scalar in a
spherically symmetric spacetime. We derived the model’s equation in harmonic coordinates and found
restriction on the metric components for this case. For the case of scaling transformation, when Weil
conformal function is equal to one, it was found metric components for the case when fi(¢) = ¢/2
and pointed out the method of definition the kinetic function X (¢) if the dependence of scalar field
¢ on radial-like coordinate u is known. New solutions for the metric components and explanation of
kinetic function X (¢) derivation were founded for special relation between metric components (ansatz)
B8 = mv, m = const. Further we plan to consider geometrical structure of obtained solutions such as
horizons and singularities.
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