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Abstract—We consider a generalization of Higgs inflation, based on cosmology of general relativity (GR),
to the case of a two-field model of the tensor-multiscalar theory of gravity (TMS TG). Cosmological
solutions are found in the case where a scalar field with the Higgs potential, as a source of TMS TG is
in the slow-rolling mode. Solutions with power and exponential-power-law evolution of the scale factor
are obtained for various limiting forms of the Higgs potential.
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1. INTRODUCTION

An important role in the development of modern
cosmology belongs to the inflationary stage in the
early epoch of the Universe evolution, which has
become a necessary feature of the Big Bang model,
which leads to a solution of many problems of the
Friedmannian standard cosmology, including the
problems of the horizon, flatness and large scale
structure formation. The models of cosmological in-
flation are usually based on the consideration of Ein-
stein’s gravity, minimally coupled to a self-interacting
scalar field [1]. The field characteristics, including
its mass and the shape of its potential, determine
the type of the phenomenological model that must
necessarily lead to agreement with the observational
data. However, quite often the questions of the shape
of the potential and the physical essence of the scalar
field itself do not receive a sufficient justification from
the standpoint of fundamental physics. An important
exception is the nonminimal Higgs inflation proposed
by Bezrukov and Shaposhnikov [2] in 2008. For
many researchers, this work has served as a starting
point for further extensions of the model, such as
Higgs inflation with a dilaton [3, 4], hybrid Higgs
inflation [5], brane inflation with a Higgs potential [6],
Higgs inflation with a scalar [7]. It should be noted
that the concept of a “scalaron” was introduced in
the Starobinsky model [8] (reliably consistent with
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the observational data) in his scenario in the frame-
work of modified R+R2 gravity. Thus we notice
a tendency to introduce additional scalar fields into
consideration, which is connected with the necessity
to eliminate the contradiction with experiments on
the electroweak interactions [9, 10].

The inclusion of additional fields into consideration
leads to the idea to investigate the multi-field theory
of gravity [11] (or the chiral cosmological model [12]),
which is similar to the tensor-multiscalar theory of
gravity. One should note the possible transition be-
tween the scalar tensor theory of gravity and other
modified theories, including f(R) gravity [13], mul-
tidimensional gravity [14], gravity with a kinetic cur-
vature scalar [15, 16].

In this paper, we consider an inflationary scenario
with a Higgs potential in the tensor-multiscalar the-
ory of gravity (TMS TG), which is a natural extension
of scalar-tensor gravity. To find solutions in such a
model, we use the Anzatz method [17], which has
proven itself well in solving similar problems. Solu-
tions for the Higgs field are searched for in the range
between two limiting cases, with the scalar field being
in the slow-rolling mode.

This study is a continuation of [18], which con-
sidered two partitions (Anzätze) for the exponential
and power-law scale factors and various choices of
the scalar field potential.

The content of the article is distributed as fol-
lows. The second section discusses a transition from
the Standard model of particle physics nonminimally
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coupled to gravity to the Einstein gravity with a scalar
field. During the transition to the Einstein frame, the
GR sector is generalized to TMS TG, which is justi-
fied by the assumption that there are additional fields
such as the scalaron, the inflaton, and the dilaton in
the original Standard model. Further, we notice the
freedom to choose one more conformal transforma-
tion introduced by TMS TG. Next, we point out the
choice of the space-time metric for a homogeneous
and isotropic Universe and the target space metric
corresponding to the introduction of two scalar fields,
and we write down the equations of cosmological
dynamics in this case.

The third section presents the limiting values of
the Higgs potential used in the study of inflationary
models.

The fourth section provides a description of the
method and presents solutions (in the slow-rolling
mode) for power-law inflation in the limit of small val-
ues of the Higgs field and deviations of the conformal
transformation function from unity. Another limiting
case when using the superpotential method with re-
spect to the Higgs potential leads to an exponential-
power-law evolution of the scale factor. To compare
the properties of the gravitational scalar fields with
models of particle physics, Section 5 presents the
masses determined from the found potentials in a
standard way.

2. THE MODEL AND THE CHOICE
OF MATERIAL ACTION

Bezrukov and Shaposhnikov [2] considered the
scalar sector of the Standard Model of particle
physics interacting with gravity in a nonminimal
manner. Choosing the unitary gauge and neglecting
all gauge interactions, the action is presented in the
J-frame (the Jordan conformal frame) as

SJ =

∫
d4x

√
−g̃

(
− M2 + ξh2

2
R̃

+
1

2
g̃μν∂μh∂νh− λ

4
(h2 − v2)2

)
, (1)

where M � MP with high accuracy, the field h is
the Higgs field in the unitary gauge, H = h/

√
2, (̃)

denotes consideration in the J-frame, v = 246 GeV
= 1.1 × 10−16mp is the vacuum mean value of the
Higgs field, and the factor λ is equal to 0.1 [19].

A transition to the E-frame (the Einstein confor-
mal frame) is carried out using the conformal trans-
formation (see, e.g., [28])

gμν = ω2g̃μν , (2)

ω2 = 1 +
ξh2

M2
P

(3)

The conformal transformation (2), (3) leads to a re-
definition of the original scalar field h according to the
relation

dχ

dh
=

√
ω2 + 6ξ2h2 M2

P

ω4
. (4)

As a result, the new field χ describes the Higgs field
in the E-frame. Thus we have made a transition from
the action (1) to the E-frame action

SE =

∫
d4x

√
−g

(
− M2

2
R

+
∂μχ∂

μχ

2
− UH(χ)

)
, (5)

where the Higgs potential UH is defined as the field
functionχ taking into account the relation (4) and has
the form

UH(χ) =
1

ω(χ)4
λ

4
(h(χ)2 − v2)2. (6)

There are at least two ways to introduce addi-
tional fields into the theory. The first way is to intro-
duce fields as sources of the gravitational field, as is
done for the Higgs model with the dilaton [3]or the
scalar [7]. Another option is to switch to the scalar-
tensor theory of gravity or, with the inclusion of a
few scalar fields, to the tensor-multiscalar theory of
gravity [20]. In this case, it is suggested to consider
the additional fields of the dilaton and/or scalaron
type as gravitational scalar fields. Let us note that
this transition is easily accomplished if we work in the
natural system of units, where 8πG = κ = M−2

P = 1.
Following the approach proposed in Damour and

Esposito-Farese (1992) [20], we consider the TMS
TG in the E-frame without a nonminimal interaction
of the scalar curvature with the gravitational scalar
fields, when the action of the matter field as a source
of gravity is considered in the “physical” metric g�μν ,
conformally related to the metric gμν in the E-frame
by the Weyl transformation g�μν = Ω2(ϕ)gμν . Con-
tinuing the studies presented in [18], we consider
a tensor-multi-scalar model of the theory of gravity
with the action

S =

∫
d4x

√
−g

[
R

2
− 1

2
gμνhABϕ

A
,μϕ

B
,ν −W (ϕC)

]

+ Sm[χm,Ω2(ϕC)gμν ]. (7)

Our notations here are mostly the same as those
used in [18]: κ = 1 is the Einstein gravitational con-
stant, R is the scalar curvature, g = det(gμν). To
shorten the record, we use ϕ,μ = ∂μϕ. Greek in-
dexes μ, ν, ... = 0, 1, 2, 3 correspond to the space-
time coordinates. Capital Latin indexes A,B,C, ... =
1, 2...N specify N scalar fields. Furthermore, the
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set of scalar fields {ϕ1, ϕ2, ...ϕN} will be denoted as
ϕ := {ϕ1, ϕ2...ϕN}. We use the Planck mass M2

P
instead of the Einstein gravitational constant κ, with
M2

P = κ
−1.

The gravitational part of the action (7) in the ab-
sence of Sm corresponds to the chiral cosmological
model (CCM) while selecting natural units, includ-
ing κ = M−2

P = 1. Thus the solutions obtained in a
number of works for CCM [21–23] can be considered
as vacuum solutions in TMS TG.

Let us assume that the material (non-gravitati-
onal) part of Sm is described by the scalar field χ with
the Higgs potential UH (6) in the E-frame. In this
case, one more conformal transition g�μν = Ω2(ϕ)gμν
must be performed to add the field to the action (7).
Then the model (7) with the Higgs field included in
the action takes the form

S =

∫
d4x

√
−g

[
R

2
− 1

2
gμνhABϕ

A
,μϕ

B
,ν −W (ϕ)

]

+

∫
d4x

√
−gΩ4(ϕ)

×
[
−1

2
gμν� χ�

,μχ
�
,ν − U�(χ

�)

]
. (8)

The transition to the new canonical field and its
potential can be carried out with the transformations

UH(χ) = Ω4(ϕ)U�(χ
�) (9)

dχ

dχ�
= Ω(ϕ) (10)

gμν� = Ω−2(ϕ)gμν . (11)

The choice of the Higgs potential UH(χ) (9) is
made due to the fact that its transformed form (6) cor-
responds to the Einstein picture, as well as the gravi-
tational component in (8) (the first integral term).

Thus, taking into account the specified substitu-
tions (9)–(11), the action (8) takes the form

S =

∫
d4x

√
−g

[
R

2
− 1

2
gμνhABϕ

A
,μϕ

B
,ν −W (ϕ)

−M−2
P

(
1

2
gμνχ,μχ,ν − UH(χ)

) ]
. (12)

In what follows M2
P = 1. The model (12) is a TMS

TG with a source in the form of a self-interacting
scalar field with the original Higgs potential. Assum-
ing that the source of gravity is specified in the same
space-time as in the case of (5), we can suppose that
Ω2(ϕ) � 1. However, we preserve the possibility that
Ω changes in time, remaining close to unity [2].

The scalar component of the action (7) of the
gravitational field is selected in the representation of

a two-component CCM with the the target space
metric

dσ2 = h11dφ
2 + h22(φ,ψ)dψ

2. (13)

Here, for the chiral fields, we are using the notations
ϕ1 = φ, ϕ2 = ψ and choose the Gaussian coordinate
system, h11 = ±1.

We write the metric of the homogeneous isotropic
universe in the Friedmann–Robertson–Walker
(FRW) form

ds2 = −dt2 + a2(t)

(
dr2

1− εr2
+ r2dθ2

+ r2 sin2 θdϕ2

)
, (14)

where ε = −1,+1, 0, which corresponds to an open,
closed or spatially flat universe, respectively. Let us
note that the case of nonzero ε may be treated as a
spatially flat FRW model with a perfect fluid having
the equation of state p = −3ρ, ρ = −ε/(3a2) [24].

Varying the action (8) with respect to the metric
and the fields, we obtain a set of equations in the class
of metrics (13), (14) having the following form [18]:

3Hψ̇h22 + ∂t(h22ψ̇)−
1

2

∂h22
∂ψ

ψ̇2 +
∂W (φ,ψ)

∂ψ

=
∂ ln Ω(φ,ψ)

∂ψ
(χ̇2

� + 4U�(χ)), (15)

φ̈h11 + 3Hφ̇h11 −
1

2

∂h22
∂φ

ψ̇2 +
∂W (φ,ψ)

∂φ

=
∂ ln Ω(φ,ψ)

∂φ
(χ̇2

� + 4U�(χ)), (16)

H2 =
1

3

[
1

2
h11φ̇

2 +
1

2
h22ψ̇

2 +W (φ,ψ)

]

+
1

3

(
1

2
χ̇2
� + U�(χ)

)
− ε

a2
, (17)

Ḣ = −
[
1

2
h11φ̇

2 +
1

2
h22ψ̇

2

]
− χ̇2

� +
ε

a2
, (18)

χ̈� + 3H�χ̇� + U�(χ),χ = 0. (19)

The set of equations (15)–(19) describes the cos-
mological dynamics of the model under consideration.
Let us note that at scaling, such that Ω(φ,ψ) =
const, the Higgs potential affects the dynamics of
the chiral fields φ and ψ only through the Hubble
parameter H .
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The consequences of Eqs. (17), (18) may be di-
vided into the equations for the kinetic and potential
parts:

K(t) =
1

2
h11φ̇

2 +
1

2
h22(φ,ψ)ψ̇

2 + χ̇2
�

=
ε

a2
− Ḣ, (20)

W (t) =
[
Ḣ + 3H2 + 2

ε

a2
− U�(χ)

]
. (21)

These equations will be useful in the construction of
decompositions (Ansätze).

3. LIMITING VALUES
OF THE HIGGS POTENTIAL

The conformal transformation (2)–(4) from the
acceptable model (from the point of view of scalar
field renormalization in curved space) with the Higgs
potential (6), implemented for the first time in [2],
turned out to be rather complicated for solving the
equations of cosmological dynamics. To simplify the
situation, we will use some approximations that have
been considered both in the pioneering article [2]and
in the subsequent papers (see, e.g., [19]).

The dependence (6) of the potential UH(χ) on the
scalar field χ in the E-frame is specified as follows:

UH(χ) =
1

ω4

λ

4
(h(χ)2 − v2)2.

Let us consider three approximations proposed
in [31] and [19]. It is in these ranges that the Higgs
inflation with the potential (6) is considered, and we
will use these limits in order to find solutions to the
cosmological dynamics equation in TMS TG:

(1) For small values of the field h �
√

2/3Mp/ξ

and ω2 � 1, from which it follows

χ � ±h, |χ| �
√

2

3

MP

ξ
, (22)

UH(χ) � λ

4
χ4. (23)

(2) Under the condition√
2

3

MP

ξ
� h � MP√

ξ
,

we obtain

χ � ±
√

2

3

ξh2

MP
,

√
2

3

MP

ξ
� |χ| �

√
3

2
MP (24)

UH(χ) � λM2
P

6ξ2
χ2, (25)

(3) At the values h � MP /
√
ξ we obtain

h � MP√
ξ
exp

(
χ√
6MP

)
, (26)

or

χ � ±
√
6MP log

(√
ξh

MP

)
, (27)

UH(χ) =
λM4

P

4ξ2

[
1 + exp

(
−2χ√
6MP

)]−2

. (28)

A good analytic approximation to the potential,
which can simultaneously describe the approxima-
tions (25) and (28), has the form

UH(χ) = V0

[
1− exp

(
−2χ√
6MP

)]2
, (29)

where the value of V0 is such that [19]:

V0 =
λM4

P

4ξ2
= 9.6× 10−11M4

P . (30)

For the analysis of theoretical predictions and their
confrontation to the observational data, we invoke the
slow-rolling mode for the Higgs field. In this case,
taking into account the requirements |χ̇2| � V (χ)
and |χ̈| � H|χ̇|, Eq. (19) takes the form

3Hχ̇+ U(χ),χ = 0. (31)

At that, in (17) and (18), the squared time derivative
of the field χ, that is, χ̇2, is elemiinated.

In the framework of our model described by the set
of equations (15)–(19), we will consider the poten-
tials (23) and (29), but in order to include them into
the TMS TG, it is necessary to carry out one more
conformal transition (9).

4. APPROXIMATIONS OF THE MODEL,
A CHOICE OF THE ANSATZ

AND THE CONFORMAL FACTOR

The decomposition (Ansatz) method for finding
the solutions has been described in the mono-
graph [17]. In the framework of this approach, we
use the following decomposition of the kinetic and
potential components of the equations. They follow
from Eqs. (20) and (21). At the same time, for the
Higgs field, the slow-rolling condition holds.

Ansatz 1
h22(φ,ψ) = h22(ψ), (32)

h22(ψ)ψ̇
2 = 2

ε

a2
(33)

Ansatz 2
h22(φ,ψ) = h22(φ), (34)
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h22(φ)ψ̇
2 = 2

ε

a2
. (35)

The decomposition for the potential and the chiral
component is the same for both cases:

h11 = const, h11φ̇
2 = −2Ḣ, (36)

W (φ,ψ) = W1(φ) +W2(φ) +W3(ψ), (37)

ψ(t) =
√
2t. (38)

The specific features of solutions of the TMS TG
set of equations (15)–(19) for each Ansatz, under a
specified evolution of the Universe and the potential,
are presented in [18].

In our model (8), considered in the metrics (13),
(14), a nonminimal interaction is absent. Therefore
there is an additional freedom in the choice of the
conformal factor Ω(φ,ψ). Let Ω(φ,ψ) be given in the
form

Ω(φ,ψ) = exp(Aφ+Bψ), (39)

where A,B ≥ 1. This choice of the conformal factor
allows for simplifying the calculations.

4.1. Small Values of the Field h � χ and Ω2 � 1

4.1.1. Power-law evolution of the scale factor,
a(t) = ctma(t) = ctma(t) = ctm. The solution for the Higgs scalar field
χ(t) is found from Eq. (31) for the chosen value of the
potential (23) and the scale factor a(t) = ctm:

χ(t) =
1

t

√
3m

λ
. (40)

The solution for W1(φ), φ(t) does not depend on the
choice of the decomposition and is the same for both
cases of the decomposition, Ansatz 1 and Ansatz 2.
Moreover, they are analogous to the solutions ob-
tained previously in [18]:

W1(φ) = m(3m− 1) exp

(
−φ

√
2

m

)
, (41)

φ(t) =
√
2m ln t. (42)

Assuming for both Ansatz 1 and Ansatz 2

ψ(t) =
√
2t, (43)

we can obtain formulas for finding solutions for the
potentials W2(φ), W3(ψ) and the chiral metric com-
ponent h22. Under the conditions of Ansatz 1, the
solution formulas are

Ẇ2(t) = 4U(χ)
∂ ln Ω

∂φ
φ̇, (44)

Ẇ3(t) = 4U�(χ)
∂ ln Ω

∂ψ
ψ̇ − 4H

ε

a2
. (45)

For Ansatz 2, the formulas are

Ẇ2(t) = 4U�(χ)
∂ ln Ω

∂φ
φ̇+ 2

εȧ

a3
, (46)

Ẇ3(t) = 4U�(χ)
∂ ln Ω

∂ψ
ψ̇ − 2H

ε

a2
. (47)

Substituting the expressions (23) for the Higgs
potentials to the resulting equations for the potentials,
we obtain the expressions presented in Table 1.

4.2. The Limits h � Mpl/
√
ξ

and
√

2/3Mp/ξ � h � Mp/
√
ξ

As has been already said before, a generalization
of the two limits√

2

3

Mp

ξ
� h � Mp√

ξ
and h � Mpl√

ξ

leads to the exponentially flat potential (29):

U(χ) = V0 [1− exp(μχ)]2 , (48)

where

μ =
−2√
6Mpl

, V0 =
λM4

pl

4ξ2
= 9.6× 10−11Mp

4.

4.2.1. The Higgs potential as a superpotential.
Consider a slightly different approach for finding so-
lutions to the model under study. In this case, we will
not specify the Hubble parameter, but consider the
exponentially flat potential (48) as a superpotential for
determining the evolution of the Universe (the scale
factor). Following the methodology presented in [25],
let us use the potential (48) as a superpotential for
finding the χfield. We write down the Higgs field
dynamic equations in the slow-rolling approximation,
and, in terms of the superpotential,

3H2 � U(χ), 3H2 = WSP , (49)

3Hχ̇ � −U(χ),χ, 3Hχ̇ = −WSP (χ),χ. (50)

Let us note that the slow-rolling approximation ac-
quires an exact form in the superpotential represen-
tation when the physical potential is replaced by the
superpotential [26, 27]. To determine the field χ�(t)
(further on we omit the asterisk), we use the expres-
sion

χ̇ = − U(χ),χ√
3U(χ)

. (51)

Integrating, we find the time dependence of the field:

χ(t) = − 1

μ
ln

(
−2μ2V0√

3V0
t

)
. (52)
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Table 1

Partition Solution

Ansatz 1 h22(ψ) =
ε2m

c2ψ2m
, ψ(t) =

√
2t

W2(φ) = −9A
√
m5

2
√
2λ

exp

(
− 4φ√

2m

)

W3(ψ) = −12m2B

λ
ψ−3 − 2ε2m

c2
ψ−2m

Ansatz 2 h22(φ) =
2ε

с2
exp(−2mφ), ψ(t) =

√
2t

W2(φ) = −9A
√
m5

2
√
2λ

exp

(
− 4φ√

2m

)
− ε exp(−φ

√
2m)

W3(ψ)−
12m2B

λ
ψ−3 +

ε2m

c2
ψ−2m

The Hubble parameter is determined through the su-
perpotential using Eq. (49):

H(χ) =

√
V0

3
(1− exp(μχ)). (53)

To find the dependence H(t), we substitute to
Eq. (53) the field value (52):

H(t) =

√
V0

3
+

1

2μ2t
. (54)

Then the scale factor can be found from the definition
H(t) = ȧ/a:

a = exp

(√
V0

3
t

)
t1/2μ

2
. (55)

Thus we have obtained a power law-exponential evo-
lution of the Universe which well agrees with the
observational data [33].

We will use the obtained values of the potential,
the field, the Hubble parameter and the scale factor
for solving the set of equations (15)–(19).

The physical potential, corresponding to the cho-
sen superpotential, as found in a standard way and
has the form

VPhys(χ) = V0

[
1− 2eμχ + e2μχ

(
1− 2μ2

3

)]
. (56)

A physical potential of such a form can be met in
many solutions of Friedmannian cosmology, see,
e.g., [1].

4.3. Examples of Solutions

We will seek solutions to the set of equations (15)–
(19) in the same way under Ansatz 1 and Ansatz 2.
Here we will specify the conformal factor in the
form (39).

The value of the field φ(t) (36) with the obtained
value of the field χ(t) (52), the potential W1(φ) and
the Hubble parameter (54) will be the same for both
Ansätze;

φ(t) =

√
1

2μ2
ln t, (57)

W1(t) = V0 +
1

2μ2t2

(
2
√

3V0t+
3

2μ2
− 1

)
, (58)

W1(φ) = V0 +
1

2μ2
exp(−2φ

√
2μ2)

×
[
2
√

3V0 exp(φ
√

2μ2) +
3

2μ2
− 1

]
. (59)

Using the formulas for finding the potentials with
Ansatz 1, (44), (45), and Ansatz 2, (47), (46), we
obtain the expressions presented in Table 2.

The obtained solutions show that solutions with
the Higgs potential within the TMS TG are possible.
Moreover, if we consider a flat Universe with ε =
0, then the solutions for the potentials of the chiral
fields W2(φ) and W3(ψ) will be the same for both
decompositions.

5. CONCLUSION

We have considered the possibility of a transition
from gravity with a nonminimal interaction with the
Higgs potential to the tensor-multi-scalar theory of
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Table 2

Partitio Solution

Ansatz 1 h22(ψ) = ε exp(−
√

2V0

3
ψ)

(
ψ√
2

)−1/μ2

W2(φ) =
4AV0√
2μ2

(
(φ

√
2μ2) +

√
3

2μ2
√
V0

exp(−φ
√

2μ2)− 3

8μ4V0
exp(−2φ

√
2μ2)

)

W3(ψ) = 4
√
2V0B

[
ψ√
2
−

√
3

2μ2
√
V0

ln
ψ√
2
− 3

4μ4V0

√
2

ψ

]

+ 8ε exp

(
−

√
V0

3

ψ√
2

)
∗ ψ√

2

−1/2μ2

Ansatz 2 h22(φ) = ε exp

(
−

√
4V0

3
exp(φ

√
2μ2)− φ

√
2

μ2

)

W2(φ) =
4AV0√
2μ2

(
(φ

√
2μ2) +

√
3

2μ2
√
V0

exp(−φ
√

2μ2)− 3

8μ4V0
exp(−2φ

√
2μ2)

)

− ε exp

(
−2

√
V0

3
exp(φ

√
−2μ2)

)
∗ (φ

√
−2μ2)−1/μ2

W3(ψ) = 4
√
2V0B

[
ψ√
2
−

√
3

2μ2
√
V0

ln
ψ√
2
− 3

4μ4V0

√
2

ψ

]
+ ε exp

(
−

√
V0

3

ψ√
2

)
× ψ√

2

−1/2μ2

Table 3

Partition Solution

Ansatz 1 M2
1(φ) = 2(3m− 1) exp

(
−φ

√
2

m

)

M2
2(φ) = −36A

√
m3

√
2λMp

2
exp

(
− 4φ√

2m

)

M2
3(ψ) = −48m2B

λMp
2 ψ−5 − 4ε2m

c2
m(2m+ 1)ψ−2m−2

Ansatz 2 M2
1(φ) = 2(3m− 1) exp

(
−φ

√
2

m

)

M2
2(φ) = −36A

√
m3

√
2λMp

2
exp

(
− 4φ√

2m

)
− 9mB

√
2

2λ
exp

(
− 3φ√

2m

)

M2
3(ψ) = −48m2B

λMp
2 ψ−5 +

2ε2m

c2
m(2m+ 1)ψ−2m−2

gravity instead of the standard transition to GR by
a conformal transformation. Taking into account the
additional fields, using previously developed methods
for TMS TG and the CCM, allows for designing
solutions in the slow-rolling approximation for the
Higgs field. In what follows we will show that the

obtained solutions allow us to estimate the changes
of cosmological parameters induced by the additional
fields.

While solving the problem, we have obtained a
set of potentials related to the gravitational field. We
will consider these potentials from the positions of the
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Table 4

Partition Solution

Ansatz 1 M2
1 (φ) = −4

√
3V0 exp(−φ

√
2μ2) + 6μ−2 exp(−2φ

√
2μ2)− 4 exp(−2φ

√
2μ2)

M2
2 (φ) =

4AV0

Mp
2
√
2μ2

(√
3

V0
exp(−φ

√
2μ2)− 3

μ2V0
exp(−2φ

√
2μ2)

)

M2
3 (ψ) = +

4
√
2V0B

Mp
2

[√
32μ2

√
V0

ψ

−2

− 3
√
2

2μ4V0
ψ−3

]

+
2εV0

3μ2

(
1

2μ2
− 1

)
exp

(
−

√
V0

6
ψ

)
∗

(√
2

ψ

)1/(2μ2)−2

Ansatz 2 M2
1 (φ) = −4

√
3V0 exp(−φ

√
2μ2) + 6μ−2 exp(−2φ

√
2μ2)− 4 exp(−2φ

√
2μ2)

M2
2 (φ) =

4AV0

Mp
2
√
2μ2

(√
3

V0
exp(−φ

√
2μ2)− 3

μ2V0
exp(−2φ

√
2μ2)

)

M2
3 (ψ) = +

4
√
2V0B

Mp
2

[√
32μ2

√
V0

ψ

−2

− 3
√
2

2μ4V0
ψ−3

]

+
εV0

12μ2

(
1

2μ2
− 1

)
exp

(
−

√
V0

6
ψ

)
∗
√
2

ψ

1/(2μ2)−2

standard approach of particle theory and determine
the masses corresponding to the scalar particles of
TMS TG in a standard way.

We will find the scalar field mass from the second-
order derivative of the potential by the formula

M2 =

(
d2W

dφ2

)
φ=0

(60)

Table 3 presents the results of computing the second-
order derivatives for the obtained solutions for
Case 4.1.

Let us note that the mass M1 is completely de-
termined by the degree of expansion (the parameter
m). The mass of M2 is determined by both the degree
of expansion of the Universe, the Higgs potential pa-
rameter, λ, and the Planck mass Mp. The mass of the
field ψ M3 tends to infinity for any parameters, except
for evolution with a(t) ∝ t3/2 under the relation for
constants −9Bc2 = λM2

p ε2
5/2. With the specified

ratio, M3 = 0. The situation is the same for Ansatz 2.

Table 4 presents the results of calculation of the
second-order derivatives for the obtained solutions in
Case 4.2.

In this case, the masses M1 and M2 are deter-
mined by both the degree of expansion of the Universe
and the parameters of the Higgs potential λ, ξ as well
as the Planck mass (it is involved in V0 and μ).
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