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Abstract: We investigate the ability of the exponential power-law inflation to be a phenomenologically
correct model of the early universe. We study General Relativity (GR) scalar cosmology equations
in Ivanov–Salopek–Bond (or Hamilton–Jacobi like) representation where the Hubble parameter
H is the function of a scalar field φ. Such approach admits calculation of the potential for given
H(φ) and consequently reconstruction of f (R) gravity in parametric form. By this manner the
Starobinsky potential and non-minimal Higgs potential (and consequently the corresponding f (R)
gravity) were reconstructed using constraints on the model’s parameters. We also consider methods
for generalising the obtained solutions to the case of chiral cosmological models and scalar-tensor
gravity. Models based on the quadratic relationship between the Hubble parameter and the function
of the non-minimal interaction of the scalar field and curvature are also considered. Comparison
to observation (PLANCK 2018) data shows that all models under consideration give correct values
for the scalar spectral index and tensor-to-scalar ratio under a wide range of exponential-power-law
model’s parameters.

Keywords: gravitation; cosmology; inflation

1. Introduction

The inflationary paradigm implying the accelerated expansion of the early universe is often
considered as a successful [1] explanation for the origin of its structure. The first models of cosmological
inflation were built on the basis of General Relativity (GR) in 4D Friedmann–Robertson–Walker (FRW)
space-time under the assumption of the existence of some scalar field (inflaton), which is the source of
the accelerated expansion of the universe [1–4].

Since the potential of a scalar field V(φ) has a key role in the construction of inflation scenarios,
the models of the early universe are often determined by the chosen potential. Such a method can be
called as the “potential motivated approach”. In this case, inflationary models are classified by the
scalar field potential.

On the other hand, the dynamics of the expansion, which are characterised by a scale factor
a(t), are no less important for an understanding of the inflationary scenarios and one can reconstruct
the potential V(φ) from the chosen scale factor (see, for example, [5]). In the context of this method,
which we will call the “dynamical motivated approach”, inflationary models are classified by the laws
of the expansion of the universe.
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A convenient tool for the analysis of the inflationary model is the slow-roll approximation
(see, for example, in [6]) and a lot of models are considered on the basis of this approach. We also
note the possibility of constructing quasi de Sitter solutions based on the linear relationship
between the kinetic energy of a scalar field and the state parameter in the context of kinetic
approximation [7,8]. Nevertheless, for a more correct understanding of the nature of processes
at the stage of inflation, the exact solutions of cosmological dynamic equations were considered as
well (see, for example, [9–14]). The classification of the methods for generating them (and the exact
solutions themselves) for inflation based on Einstein gravity can be found in the monograph [15].

The accelerated expansion of the universe, discovered in 1998 by two independent
collaborations [16,17], significantly changed the paradigm of constructing cosmological models.
To explain inflationary and second accelerated expansion, various types of scalar fields and interactions
between them (in multifield models) or modifications and Einstein gravity that appear on cosmological
scales are used.

According to modern observations, the dynamics of the universe are in good agreement with the
ΛCDM model, which includes the cosmological constant associated with the vacuum energy [18–21]
and simulates dark energy. An alternative description of dark energy is based on light fields of
quintessence and k-essence, which are used instead of the cosmological constant [22–28]. As another
source of the accelerated expansion of the universe [29–34], nonlinear sigma models with an interaction
potential or chiral cosmological models with a multiplet of scalar fields were considered, the specificity
of which is in describing the interaction between fields through the internal targets space. In the
case of the description of the repeated accelerated expansion in the universe with cold dark matter,
such models are called σCDM-models [31–34].

When studying cosmological models based on modified theories of gravity the question arises
about the need to use scalar fields to explain the accelerated expansion of the universe. An example
of a theory of gravity that successfully explains both stages of accelerated expansion and leads to
a geometric interpretation of the cosmological constant [35] is f (R)-gravity [36–38], in which the
dynamic effects of scalar fields (without including the scalar fields themselves) are obtained by adding
higher-order curvature terms to the action.

Nevertheless, the equations of cosmological dynamics in f (R)-gravity can be considered in
the framework of conformal connection with standard inflation models based on general relativity,
containing the scalar field [39,40]. Based on this connection, the potential of the scalar field V(φ) can
be reconstructed with the subsequent analysis of the cosmological model obtained in the Einstein
representation [41]. On the other hand, it is possible to solve the inverse problem of reconstructing
the dependence f = f (R) from the known potential of the scalar field V(φ), that is, to obtain
the form of f (R)-gravity, corresponding to the models considered in the Einstein representation
cosmological inflation.

Another example of the early universe models based on the modifications of Einstein gravity
is cosmological inflation based on scalar-tensor theories of gravity. The main attention is paid to
the analysis of these models in this study. In [42–44], cosmological models based on tensor-scalar
gravity were considered both for constructing actual models of the universe and for solving the inverse
problem of reconstructing the parameters of the theory of gravity from the observed dynamics.

The most general scalar-tensor theory of gravity, leading to the equations of second-order
cosmological dynamics in the four-dimensional Friedmann universe, is Horndeski gravity [45–47].
When constructing cosmological models based on Horndeski gravity, one can consider special
cases based on the non-minimal interaction of the scalar field with the Ricci scalar [48–52] and the
Gauss–Bonnet scalar [53–62], otherwise the Einstein–Gauss–Bonnet (EGB) gravity, which is also a
special case of Lovelock gravity [63].

The inflationary models containing a combination of Friedmann solutions and (quasi) de Sitter
solutions constitute the basis of an actual description of the evolution of the early universe. In the
context of the inflationary paradigm, the early universe expands rapidly for some time and then goes
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into a power-law expansion regime without acceleration corresponding to the Friedmann solutions for
radiation and baryonic matter.

In this article we consider the exponential power-law (EPL) inflation, which implies such a
combination of the dynamical regimes. We also give an review of methods for constructing exact and
approximate solutions with these types of dynamics for various types of gravity theories. For the case
of f (R)-gravity on the basis of the exact solutions and ones obtained in slow-roll approximation it is
shown that widely discussed Starobinsky [1,39,40,64–66] and non-minimal Higgs [67–69] inflationary
models, which imply the same potential of the scalar field, can be considered as the partial cases of
the exponential power-law inflation in the context of the dynamical motivated approach. We also
generalize the cosmological solutions for EPL inflation obtained in the framework of general relativity
and one scalar field to the cases of multifield chiral cosmological models and modified gravity theories
with non-minimal coupling of the scalar field with the Ricci scalar and Gauss–Bonnet scalar. Further,
we will consider EPL inflationary models with scalar-tensor gravity based on the quadratic relationship
between the Hubble parameter and the function of the non-minimal coupling of the scalar field
and curvature.

The article is organised as follows. Section 2 contains exact and slow-roll GR cosmology equations
in FRW space-time. In Section 3 we analyse the slow-roll solutions for exponential power-law (EPL)
inflation. Three parametric slow-roll approximated solutions were found and it is shown which
restrictions on parameters lead to Starobinsky potential (which, in turn, leads to Starobinsky R + R2

gravity model). The derivation of the de Sitter solution, and Starobinsky gravity using special choice
of EPL model parameters are shown. The relation between exact and slow-roll solutions is discussed
as well. In Section 4 we generalize the solutions obtained for EPL inflation in the framework of GR on
the case of Chiral Cosmological Models (CCM) and describe the method of reducing cosmological
solutions for single field models to multifield ones. In Section 5 we consider the GR-like cosmological
models with EPL dynamics based on the scalar-tensor gravity implying non-minimal coupling of a
scalar field with the Ricci scalar and Gauss–Bonnet scalar. In Section 6 correspondence EPL inflation to
observation data was considered. It was shown that one of the parameters can always be chosen so
that observational constraints are satisfied. Section 7 is devoted to EPL inflationary models based on
the scalar-tensor gravity with quadratic connection between Hubble parameter and coupling function.
Methods for constructing exact and approximate cosmological solutions for these models are also
presented. In Section 8 we discuss the main results and methods under consideration.

2. The Exact and Approximate Solutions for EPL Inflation Based on Einstein Gravity

The inflationary models based on Einstein gravity and a single scalar field defined by the action

S =
∫

d4x
√
−g
[

1
2

R− 1
2

gµν∂µφ∂νφ−V(φ)

]
, (1)

where φ is a scalar field, V(φ) is the potential of a scalar field and gµν is a metric tensor of a space-time.
We set Einstein gravitational constant κ = 8πG = 1.

The variation of the action (1) with respect to the metric and field in a spatially flat
Friedmann–Robertson–Walker space

ds2 = −dt2 + a2(t)
(

dx2 + dy2 + dz2
)

, (2)

gives three dynamic equations

3H2 =
1
2

φ̇2 + V(φ) ≡ ρφ, (3)

− 3H2 − 2Ḣ =
1
2

φ̇2 −V(φ) ≡ pφ, (4)

φ̈ + 3Hφ̇ + V′φ = 0, (5)
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where ρφ and pφ are the energy density and the pressure of a scalar field, also, V′φ = dV/dφ.
The methods of the exact solutions construction for these systems of equations one can find,

for example, in [11,12]. One of them is the method proposed by Ivanov [9] and subsequently Salopek
and Bond [10].

From the Equations (3)–(5) only two are independent, and this system can be represented as the
Ivanov–Salopek–Bond equations (or as Hamilton–Jacobi type equations)

V(φ) = 3H2 − 2H′2φ , (6)

φ̇ = −2H′φ, (7)

in which the exact solutions are obtained by the choice of the Hubble parameter H(φ).
In the case of the slow-roll approximation, which implies that V(φ) � 1

2 φ̇2 and φ̈ ≈ 0,
the system (3)–(5) is reduced to the equations

V(φ) ≈ 3H2, (8)

φ̇ ≈ −2H′φ. (9)

Therefore, the difference between the exact and approximate background cosmological solutions
is the second term in the potential (6).

2.1. The Exact and Approximate Solutions for Exponential Power-Law Inflation

We represent the exponential power-law (EPL) expansion of universe, with the following
parametrisation of the Hubble function

H(φ) = ±µ1 exp(−µ2φ) + µ3, (10)

where µ1, µ2 and µ3 are arbitrary real constants.
From Equations (6) and (7) one has the following exact solutions:

V(φ) = 3
(
µ3 ± µ1e−µ2φ

)2 − 2µ2
1µ2

2e−2µ2φ, (11)

φ(t) =
1

µ2
ln
(

2µ1µ2
2t + c

)
+ n

iπ
µ2

, (12)

H(t) =
µ1

2µ1µ2
2t + c

+ µ3, (13)

a(t) = a0 exp(µ3t)(2µ1µ2
2t + c)1/2µ2

2 , (14)

where the constant n = 0,±1,±2,±3, . . .
For the case of the slow-roll approximation, from Equations (8)–(9) one has

VSR(φ) = 3
(
µ3 ± µ1e−µ2φ

)2 , (15)

with the same evolution of the scalar field and expansion law of the universe, which are defined by
expressions (12)–(14).

As one can see, the scalar field (12) can be considered as a complex one with the variable real part
and constant imaginary part.

Taking into account the Euler identity eiπ = −1, after substituting the expression (12) into (10)
for even values of the constant n one has potential (11) with an upper sign, and for odd values of
the constant n one has potential (11) with a lower sign corresponding to the same dynamics of the
universe’s expansion (13) and (14). For the constant n = 0 one has potential (11) with upper sign
corresponding to the case of the exponential power-law inflation with the canonical scalar field.
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Also, we note, that the parameters of the EPL inflationary model corresponding to the scalar
field (12), namely kinetic energy, potential, energy density and pressure of this field

X(t) =
1
2

φ̇2 =
2µ2

1µ2
2(

2µ1µ2
2t + c

)2 , (16)

V(t) =
µ2

1(3− 2µ2
2)(

2µ1µ2
2t + c

)2 +
6µ1µ3

2µ1µ2
2t + c

+ 3µ2
3, (17)

ρφ(t) = 3

(
µ1

2µ1µ2
2t + c

+ µ3

)2

, (18)

pφ(t) =
µ2

1(4µ2
2 − 3)(

2µ1µ2
2t + c

)2 −
6µ1µ3

2µ1µ2
2t + c

− 3µ2
3, (19)

are the real functions of cosmic time.

2.2. The Dynamics of the Universe’s Expansion

Requesting a positive sign for eµ2φ (or, equivalently, positive value for logarithm’s argument
of (12)) we have the restriction on time

t < tend, tend = c/(2µ1µ2
2), (20)

when cµ1 < 0. It means that till that time early inflation should finish.
Further restriction we obtain from universe expansion, i.e., H > 0.
From Equation (13) we can find that H will be positive always if

µ3 > 0, µ1 < 0, c > 0. (21)

If µ3 < 0 the first term in the RHS of (13) should be positive and excess |µ3|. This leads to
restriction on time

t < |µ1/|µ3| − c
2µ1µ2

2
|, (22)

which is valid for c > 0, µ1 < 0 or c < 0, µ1 > 0. So the universe will be under expansion
till the time (22), which should be less than that validated by the solution, the time tend (20).
Therefore the inequality

|µ3| < µ1/(2c), (23)

should be true.
Let us study the period of acceleration for the model under consideration under the condition (20).

Direct calculation of relative acceleration

Q ≡ ä/a = H2 + Ḣ,

gives

Q =
ä
a
= µ2

1e−2µ1φ(1− 2µ3
2)− 2µ1µ3e−µ2φ + µ3. (24)

Generally speaking the case when (1− 2µ3
2) > 0 gives two accelerating periods in terms of e−µ2φ

when µ3 < 0 and when 0 < µ3 < 1/
√

2. If (1− 2µ3
2) < 0 then there exists one accelerating period in

the cases: (i) µ3 > 1/
√

2 solution oscillates between two roots; (ii) 0 < µ3 < 1/
√

2 solution oscillates
between zero and the bigger root; (iii) the same behaviour when µ3 < −1/

√
2.

Also, we note that a numerical analysis of the stages of expansion of the universe for the Hubble
parameter (13) was performed in [70].
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We also give an asymptotic analysis of the dynamics of expansion of the universe for the case of
positive values of the constant parameters µ1, µ3 and c.

At the small times that correspond to inflationary stage t ≈ 0 one has the exponential expansion
with following Hubble parameter and scale factor

Hin f '
µ1

c
+ µ3, ain f (t) ∝ exp

[(µ1

c
+ µ3

)
t
]

. (25)

On the following stage, under the condition

µ1

2µ1µ2
2t + c

� µ3, (26)

one has the power-law expansion with the Hubble parameter and scale factor

HPL(t) '
µ1

2µ1µ2
2t + c

, aPL(t) ∝ (2µ1µ2
2t + c)1/2µ2

2 . (27)

At the large times t → ∞ we have the second accelerated exponential expansion of the
universe with

Hsec ' µ3, asec(t) ∝ exp (µ3t) . (28)

We also note that the rate of expansion of the universe during the second inflation is much lower
than in the case of the first inflation Hsec � Hin f , i.e., one has the condition µ1

c � µ3.
Therefore, the models under consideration imply the exit from the first inflationary accelerated

expansion stage (for µ2 = ±1 we have the dynamics corresponding to the radiation domination stage)
and the second accelerated expansion of the universe as well. Thus, these dynamics can be considered
as the combination of de Sitter and Friedmann solutions and corresponds to the correct change in the
stages of the universe’s expansion.

3. The Exact and Approximate Solutions for EPL Inflation from Conformal Connection with
f (R)-Gravity

To make a comparison of the scalar field gravity (1) with f (R)-gravity with the action [1,39,40]

S =
∫

d4x
√
−g [ f (R)] , (29)

we will use the following relations [40]

R =

[√
6

dV
dφ

+ 4V
]

exp

(√
2
3

φ

)
, (30)

f =

[√
6

dV
dφ

+ 2V
]

exp

(
2

√
2
3

φ

)
, (31)

which connect f (R)-gravity and models based on Einstein gravity in parametric form.
Thus, one can use the relation (30) and (31) to put in accordance cosmological models based on

Einstein gravity and f (R)-gravity on the basis of the exact (6) and approximate (8) expressions for the
potential of a scalar field. In paper [41] the exact relations between potentials in Einstein frame and the
type of f (R)-gravity were reconstructed by the superpotential method.

Looking for connection of the potential (15) with Starobinsky potential [1] we set µ2 =
√

2/3.
Then, from the Equations (30) and (31) we derive

f (R) =
µ1

µ3
R +

1
24µ2

3
R2. (32)
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Further, choosing the model’s parameters for solutions (10)–(15) as follows:

−µ1 = µ3 = ±1
2

m, for n = 0,±2,±4, . . . (33)

µ1 = µ3 = ±1
2

m, for n = ±1,±3,±5, . . . (34)

from expression (15), we get the potential

VSR(φ) =
3
4

m2
(

1− e−
√

2
3 φ
)2

, (35)

which exactly corresponds to the Starobinsky potential [1,40,65,66] and non-minimal Higgs
potential [67,68] as well. The parameter m = 1.13 × 10−5 [71] can be considered as the mass of
the scalar field. Also, we note, that this potential leads to the particular case of the two-parametric
geometric modified gravity model introduced in Starobinsky’s paper [1]

f (R) = R +
1

6m2 R2, (36)

which generalised Einstein gravity by the second quadratic term in curvature.
The Starobinsky gravity model as a special case of f (R) gravity was considered in astrophysics and

cosmology (see, for example, [72–74], and literature cited therein). Also the relation of the Starobinsky
model to modified gravity and supergravity is discussed in [75–79].

Also, we note that, for the choice:

µ1 = µ3 = ±1
2

m, for n = 0,±2,±4, . . . (37)

−µ1 = µ3 = ±1
2

m, for n = ±1,±3,±5, . . . (38)

one has the following expressions for the potential and the type of f (R)-gravity

VSR(φ) =
3
4

m2
(

1 + e−
√

2
3 φ
)2

, (39)

f (R) = −R +
1

6m2 R2, (40)

with negative scalar curvature, which do not correspond to the case of the Starobinsky inflation. For the
following analysis in this section, we will only consider solutions (35) and (36) with parameters (33)
and (34).

Taking into account the expression for the Hubble parameter (28), which implies the positive
values of the constant µ3 > 0, after substituting constants (33) with upper sign into solutions (12)–(14)
one has

φ(t) =

√
3
2

ln
(
−2

3
mt + c

)
+ n

iπ
µ2

, (41)

H(t) =
3m

2(2mt− 3c)
+

1
2

m, (42)

a(t) = a0 exp
(

1
2

mt
)
(−2mt + 3c)3/4. (43)

As one can see, solutions (41)–(43) imply a singularity at time t∗ = 3c/2m, which cannot be
eliminated by choosing the constant c. Thus, we will not consider these solutions further, since the
phenomenologically correct cosmological solutions should be valid for an arbitrarily cosmic time.
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For the case of substituting constants (34) with upper sign into solutions (12)–(14), for the positive
constant c, one has non-singular solutions

φ(t) =

√
3
2

ln
(

2
3

mt + c
)
+ n

iπ
µ2

, (44)

H(t) =
3m

2(2mt + 3c)
+

1
2

m, (45)

a(t) = a0 exp
(

1
2

mt
)
(2mt + 3c)3/4, (46)

which correspond to the partial case of the cosmological solutions for EPL inflation (10)–(15)
corresponding to the Starobinsky model for the case of the slow-roll approximation.

For the potential (11), corresponding to exact solutions, with µ2 =
√

2/3 from the Equations (30)
and (31) we obtain

f (R) =
µ1

µ3
R +

1
24µ2

3
R2 +

8
3

µ2
1. (47)

If we additionally chose µ1 = 0 we the get de Sitter solution

V(φ) = 3µ2
3, φ(t) =

√
3
2

ln(c) + n
iπ
µ2

, H(t) = µ3, a(t) = a0 exp(µ3t), (48)

which correspond to the quadratic term only

fdS(R) =
1

24µ2
3

R2. (49)

Therefore, the quadratic correction in curvature R2 determines the accelerated expansion of
the universe in the Starobinsky inflationary model, which is correct in the case of the slow-roll
approximation analysis as well.

For the case
µ1 = µ3 =

1
2

m, for n = ±1,±3,±5, ... (50)

from (47) and (15) we have the Starobinsky gravity model with the additional cosmological constant

f (R) = R +
1

6m2 R2 +
2
3

m2, (51)

and the following potential in Einstein frame

V(φ) =
27
20

m2
(

1− 5
9

e−
√

2
3 φ
)2

− 3
5

m2, (52)

with the same corresponding expressions for evolution of the scalar field and universe
expansion (44)–(46) as in the case of the slow-roll approximation.

Thus, the Starobinsky inflation can be considered as the partial case of exponential power-law
inflation with the specific choice of the parameters µ1, µ2, µ3 for the complex scalar field with the
variable real part and constant imaginary part. For the constant parameter µ2 6=

√
2/3 one does

not have the explicit expression for the type of f (R)-gravity from Equations (30) and (31). However,
one can consider EPL inflation in the Einstein frame, which is connected with f (R)-gravity expressed
in parametric form.

Also, in the general case, the solutions for the canonical scalar field, i.e., for the constant n = 0
in expression (12) can be considered as the correct cosmological solutions with dynamics defined by
expressions (13) and (14) and corresponding potential (11) with an upper positive sign.
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4. The Exponential Power-Law Inflation Based on Chiral Cosmological Models

Chiral cosmological models (CCM) are widely used both to describe the inflationary stage of the
early universe and to describe the stage of the second accelerated expansion [29–34]. We also note
that on the basis of conformal transformations of the metric of space-time, it is possible to define a
correspondence between CCM and cosmological models based on modified theories of gravity [80–83].

The action for the Chiral Cosmological Models (CCM) with K scalar fields φA (φ̄ = φ1, φ2, . . . , φK) is

S =
∫

d4x
√
−g
[

1
2

R− 1
2

hAB∂µφA∂νφBgµν −V(φ̃)

]
, (53)

where hAB = hAB(φ
E) is the metric tensor of a target (fields) space, and indexes A, B, E = 1, . . . , K.

For the CCM with K-fields, in the spatially flat Friedmann–Robertson–Walker metric, from the
action (53) one has the following dynamic equations [29,30]

3H2 =
1
2

hABφ̇Aφ̇B + V(φ̄), (54)

−Ḣ =
1
2

hABφ̇Aφ̇B, (55)

hEB(φ̈
B + 3Hφ̇B) + V,E = 0. (56)

In paper [30] it was shown that this system of similar scalar fields φA can be reduced to
the equations

V(φ̄) = V(ϕ) = 3H2 + Ḣ, (57)

ϕ̇2 = −2Ḣ, (58)

for a single effective field ϕ which is connected with CCM-fields φA as

ϕ(t) = ±
√

n
2

K

∑
A=1

φA(t), φA(t) = ± 2
K
√

n
ϕ(t), (59)

under the following connections between diagonal and non-diagonal components of the metric tensor
of target space

K

∑
B

hEB =
n
K

for all E, (60)

hEB = hBE for E 6= B, (61)

where n is an arbitrary constant.
One can write the condition (60) in explicit form, which corresponds to the following connection

between diagonal components and non-diagonal ones of the metric of target (fields) space

h11 + h12 + . . . + h1K = . . . = hK1 + hK2 + . . . + hKK =
n
K

. (62)

Therefore, one can use solutions (57) and (58) for one effective field ϕ to generate the exact
solutions for multi-field chiral cosmological models under conditions (60) and (61). Thus, the target
spaces with the conditions (60) and (61) on the components of their metric can be called as reducing
target spaces.
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In the particular case of two scalar fields φ and ψ (for K = 2), the dynamics Equations (54)–(56)
can be written as follows [29,30]

3H2 =
1
2

h11φ̇2 + h12φ̇ψ̇ +
1
2

h22ψ̇2 + V(φ, ψ), (63)

− Ḣ =
1
2

h11φ̇2 + h12φ̇ψ̇ +
1
2

h22ψ̇2, (64)

3H (h11φ̇ + h12ψ̇) +
∂

∂t
(h11φ̇ + h12ψ̇)− 1

2
∂h11

∂φ
φ̇2 − ∂h12

∂φ
φ̇ψ̇− 1

2
∂h22

∂φ
ψ̇2 +

∂V
∂φ

= 0, (65)

3H (h12φ̇ + h22ψ̇) +
∂

∂t
(h12φ̇ + h22ψ̇)− 1

2
∂h11

∂ψ
φ̇2 − ∂h12

∂ψ
φ̇ψ̇− 1

2
∂h22

∂ψ
ψ̇2 +

∂V
∂ψ

= 0. (66)

In reducing target space with components (60) and (61) one has the following exact solutions of
Equations (63)–(66) for EPL inflation with canonical scalar field

V(φ) = µ2
1(3− 2µ2

2) exp
[
−µ2
√

n(φ + ψ)
]
+ 6µ1µ3 exp

[
−µ2
√

n
2

(φ + ψ)

]
+ 3µ2

3, (67)

φ(t) = ψ(t) = ± 1
µ2
√

n
ln
(

2µ1µ2
2t + c

)
. (68)

Similarly, one can reconstruct the other exact solutions for CCM with a reducing target space
based on solutions for single field cosmological models.

An important difference between inflation with multiple scalar fields and inflation with one
field is the appearance of additional non-adiabatic perturbations and the evolution of cosmological
perturbations after crossing the event horizon as a consequence of the interaction between adiabatic
perturbations, which can have a significant effect on the values of the spectral parameters of
cosmological perturbations.

Taking into account the interaction of perturbations leads to nonlinear effects, since the
perturbations of the scalar fields interact in this case, in contrast to the case of models with one
scalar field in the linear order of the theory of cosmological perturbations, where all modes develop
independently [84–88].

In the general case, φ 6= ψ, at the stage of cosmological inflation, perturbations of the scalar fields
δφ and δψ, under the conditions ε = − Ḣ

H2 � 1 and δ = − Ḧ
2HḢ � 1 for the slow-roll parameters,

one has the following curvature perturbations [87]

R ' H
(

δφ

φ̇
+

δψ

ψ̇

)
, (69)

and entropy perturbations

S = H
(

δφ

φ̇
− δψ

ψ̇

)
. (70)

For the similar scalar fields φ = ψ entropy perturbations equal to zero S = 0, and curvature
perturbationsR ∝ H δφ

φ̇
correspond to models with one scalar field. Thus, the spectral parameters of

cosmological perturbations in the considered chiral cosmological models are calculated similarly to
the case of models of the early universe with one scalar field.

The influence of these effects on the deviation of the resulting disturbance spectrum from Gaussian
is estimated using the nonlinearity parameter fNL [89]. According to the latest observational data from
the PLANCK satellite, the value of the nonlinearity parameter is estimated as fNL = 2.5± 5.7 [90,91].
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Now let us define the parameter fNL, which determines the deviation of the spectrum of
cosmological perturbations from the Gaussian, for two-field models as follows

6
5

fNL = 2

u2
H

σ
φ
∗

(
1− γ

φ
∗

σ
φ
∗

uH

)
+

v2
H

σ
ψ
∗

(
1− γ

ψ
∗

σ
ψ
∗

vH

)
+ 2

(
uH

σ
φ
∗
− vH

σ
ψ
∗

)2
AH(

u2
H

σ
φ
∗
+

v2
H

σ
ψ
∗

)2 , (71)

where

σφ =

H(1)
,φ

H

2

, σψ =

H(2)
,ψ

H

2

, γφ =
H(1)

,φφ

H
, γψ =

H(2)
,ψψ

H
, (72)

H(φ, ψ) = H(1)(φ) + H(2)(ψ), σ = σφ + σψ =
1
2

ε, (73)

uH ≡
H(1)
∗ + Ze

H∗
, vH ≡

H(2)
∗ − Ze

H∗
, Ze =

(
H(2)

e σ
φ
e − H(1)

e σ
ψ
e

)
/σe , (74)

AH = −H2
e

H2∗

σ
φ
e σ

ψ
e

σe

(
1
2
− γss

e
σe

)
, (75)

γss =
(
σψγφ + σφγψ

)
/σ , (76)

the indices (∗) and (e) denote the crossing of the event horizon and the end of inflation, respectively.
For the case or φ = ψ and V( phi) = V(ψ), the parameters of cosmological perturbations at the

horizon crossing and at the end of inflation are equal, also one has

uH = vH = 1, σφ = σψ =
1
2

ε, γφ = γψ = δ, γss = δ, Ze = 0. (77)

Thus, the nonlinearity parameter is

6
5

fNL = ε− δ� 1, (78)

hence, the spectrum of scalar perturbations for the considered class of models can be considered
Gaussian, as in the case of models with one scalar field.

The proposed approach simplifies the initially more complex cosmological models and, in this
case, only special classes of solutions are considered, associated with the original model of the early
universe with one canonical scalar field in the context of its generalisation.

5. The Exponential Power-Law Inflation in GR-Like Cosmological Models Based on Generalised
Scalar-Tensor Gravity

Scalar-tensor gravity (STG) with non-minimal coupling of a scalar field to curvature are important
extensions of GR explaining the initial inflationary evolution, as well as the late accelerating expansion
of the universe [48–52]. For the very early universe approaching the Planck scale one can consider
Einstein gravity with some corrections as the effective theory of the quantum gravity. The effective
supergravity action from superstrings induces correction terms of higher order in the curvature,
which may play a significant role in the early universe.

Now, we consider generalised scalar-tensor gravity (GSTG) theory with the action [50,51,92–94]

S =
1
2

∫
d4x
√
−g
[
F(φ, R)−ω(φ)gµν∂µφ∂νφ− 2V(φ)

]
, (79)



Universe 2020, 6, 199 12 of 23

where
F(φ, R) = R + f (φ)R + ξ(φ)R2

GB (80)

where f (φ) defines a non-minimal coupling of a scalar field with Ricci scalar and ξ(φ) defines a
non-minimal coupling of a scalar field with Gauss–Bonnet scalar R2

GB = RµνρσRµνρσ − 4RµνRµν + R2.
The equations of cosmological dynamics at the stage of inflation in a spatially flat 4D Friedmann

universe can be written as

E1 ≡ 3(1 + f )H2 + 3H ḟ − ω

2
φ̇2 −V(φ)− 12H3ξ̇ = 0, (81)

E2 ≡ (1 + f )(3H2 + 2Ḣ) + 2H ḟ + f̈ +
ω

2
φ̇2 −V(φ)− 8H3ξ̇ − 8HḢξ̇ − 4H2ξ̈ = 0, (82)

E3 ≡ ωφ̈ + 3ωHφ̇ +
1
2

φ̇2ω′φ + V′φ − 6H2 f ′φ − 3ḢF′φ + 12H4ξ ′φ + 12H2Ḣξ ′φ = 0, (83)

with the additional condition
φ̇E3 + Ė1 + 3H(E1 − E2) = 0. (84)

Taking into account (84) we conclude that two equations from (81)–(83) are independent only.
One can represent the cosmological dynamic equations as

V(φ) = 3(1 + f )H2 + (1 + f )Ḣ +
5
2

H ḟ +
1
2

f̈ − 10H3ξ̇ − 2H2ξ̈ − 4HḢξ̇, (85)

ω(φ)φ̇2 = H ḟ − 2(1 + f )Ḣ − f̈ − 4H3ξ̇ + 8HḢξ̇ + 4H2ξ̈. (86)

As one can see, the constant coupling of the scalar field and the Gauss–Bonnet scalar ξ = const
does not change the equations of cosmological dynamics for scalar-tensor gravity. The case of GR
corresponds to the choice f = 0, ω = 1 and ξ = 0 .

To characterize the difference between cosmological inflation based on Einstein gravity and
generalised scalar-tensor gravity, we introduce the deviation parameters ∆ST = ∆ST(t) and ∆GB =

∆GB(t), which are connected to the coupling functions as [92]

f (φ) = −∆ST , (87)

ξ̇ = −∆GB
2H2 . (88)

In terms of these parameters one has the following background dynamic equations

V(φ) = 3(1− ∆ST)H2 + (1− ∆ST)Ḣ − 5
2

H∆̇ST −
1
2

∆̈ST + ∆̇GB + 5H∆GB, (89)

ω(φ)φ̇2 = −2(1− ∆ST)Ḣ − H∆̇ST + ∆̈ST − 2∆̇GB + 2H∆GB. (90)

Now, we define the kinetic function and the deviation parameters as follows [92]

ω(φ) = 1 +
3
ε

(
∆ST + 2

∆GB
H

)
, (91)

∆ST(t) = βSTa−2(t), (92)

∆GB(t) = αGBa−5(t), (93)

where βST and αGB are the coupling constants of the scalar field with the Ricci scalar and Gauss–Bonnet
scalar, respectively.
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After substituting the functions (91)–(93) into the background dynamics Equations (89) and (90)
we have the equations

V(φ) = 3H2 + Ḣ, (94)

φ̇2 = −2Ḣ. (95)

Further, from (87) and (88) we derive the expressions for non-minimal coupling functions and the
kinetic function

f (t) = − βST
a2(t)

, (96)

ξ̇ = − αGB
2a5H2 , (97)

ω(t) = 1 +
3

εa2

(
βST +

2αGB
Ha3

)
. (98)

Therefore, for each exact solution of the system (94) and (95) one can find corresponding functions
(96)–(98), which characterise the type of GSTG model.

Now, we represent the Equations (94) and (95) and the functions (96)–(98) in terms of a scalar field
φ as the argument on the basis of the following relations

Ḣ = −2H′2φ , (99)

ξ̇ = ξ ′φφ̇ = −2ξ ′φ H′φ, (100)

a(φ) = a0 exp

(
−1

2

∫ H
H′φ

dφ

)
. (101)

As the result, Equations (94) and (95) are transformed to the Ivanov–Salopek–Bond equations for
GR [9,10]

V(φ) = 3H2 − 2H′2φ , (102)

φ̇ = −2H′φ, (103)

with corresponding non-minimal coupling and kinetic functions

f (φ) = − βST

a2
0

exp

(∫ H
H′φ

dφ

)
, (104)

ξ ′φ =
αGB

4a5
0H′φ H2

exp

(
5
2

∫ H
H′φ

dφ

)
, (105)

ω(φ) = 1 +
3
2

(
H
H′φ

)2

exp

(∫ H
H′φ

dφ

)[
βST +

2αGB
H

exp

(
3
2

∫ H
H′φ

dφ

)]
. (106)

For EPL with a Hubble parameter (10), in the general case, non-minimal coupling function
ξ = ξ(φ) can be found in quadratures only, however, for µ2 =

√
5/4,
√

5/6 it is possible to obtain this
function in explicit form [92].

Further, we consider the evolution of the deviation parameters in terms of the e-folds numbers
N = ln (a/a0) = −(1/2)

∫
(H/H′) dφ. From the expressions (92) and (93) we obtain ∆ST ∝ exp(−2N)

and ∆GB ∝ exp(−5N). Thus, the initial deviations between GR and GST gravity rapidly decrease with
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the expansion of the universe in these models. The value of the e-folds numbers at the end of inflation
is estimated as N = 50− 60 and, therefore, we have [92]

∆ST(N = 60)
∆ST(N = 0)

= e−120 ≈ 7.7× 10−53, (107)

∆GB(N = 60)
∆GB(N = 0)

= e−300 ≈ 5.2× 10−131, (108)

where ∆ST(N = 0), ∆GB(N = 0) and ∆GB(N = 60), ∆GB(N = 60) correspond to the values of the
deviation parameters at the beginning and at the end of inflation. Thus, for the case ∆ST(N = 0)� e120

and ∆GB(N = 0)� e300 at the end of inflation one has ∆ST ' 0 and ∆GB ' 0.
Also, the parameters of cosmological perturbations for the case of GST gravity under the

conditions (91)–(93) coincide with ones in general relativity with high accuracy. Therefore, the proposed
approach leads to the generalisation of the inflationary models based on Einstein gravity into the same
ones in generalised scalar-tensor gravity.

6. The Correspondence to the Observational Constraints

One of the main methods of verification of cosmological models is the comparison of the
obtained parameters of cosmological perturbations with observational constraints, which are based on
measurements of CMB anisotropy.

These constraints from the PLANCK observations are at the moment estimated as [91]

PS = 2.1× 10−9, (109)

nS = 0.9663± 0.0041, (110)

r < 0.064 (PLANCK 2018/BICEP2/Keck-Array). (111)

The parameters of the cosmological perturbations for Starobinsky and non-minimal Higgs
inflation were calculated, for example, in the paper [71]. The spectral index of scalar perturbations nS
and tensor-to-scalar ratio r for this type of inflation are nS = 0.967 and r = 0.003.

For the exponential power-law inflation with arbitrary constants µ1, µ2, µ3 and c these parameters
were calculated in the paper [92] on the basis of the exact solutions of background dynamic equations.
The resulting relation between the spectral index of scalar perturbations and tensor-to-scalar ratio was
determined as

r =
4s

nS − 3

nS − 1 +
µ2

(√
2µ2 −

√
2µ2

2 + 4n2
S − 16nS + 12

)
√

2(nS − 3)

 , (112)

where the constant parameter s characterizes the normalisation of the amplitude of the tensor
perturbations. We will consider the value of this parameter as s = 1. The value of the power
spectrum of the scalar perturbations on the crossing of the Hubble radius PS = A2

S = 2.1× 10−9 can
be always obtained by the choice of the constants µ1, µ3 and c for any µ2 [92].

For the case of the Harrison–Zeldovich spectrum (nS = 1) the expression (112) gives r = 0, i.e.,
the absence of relic gravitational waves (tensor perturbations) for any value of µ2. Also, for µ2 → ∞
one has r = 0 for any value of nS as well.

For Starobinsky and non-minimal Higgs inflation with µ2 =
√

2/3 and nS = 0.967 from the
relation (112) one has r = 0.003, which corresponds to the result obtained in [71]. Also, one can
calculate the parameters of cosmological perturbations for the other values of the constant µ2.

On Figure 1 the dependences of the tensor-to-scalar ratio r on the spectral index of scalar
perturbations nS for various values of the parameter µ2, which corresponds to the observational
constraints, are shown.
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Figure 1. The dependence r = r(nS) for different values of the constant µ2 = 1/2,
√

2/3, 2.

As one can see, exponential power-law inflation allows to satisfy any restrictions on the value of
the tensor-to-scalar ratio by choosing the parameter µ2.

7. EPL Inflation Based on Scalar-tensor Gravity with Quadratic Connection H ∝
√

F

Now, we consider the inflationary models based on the action (79) with F(φ) = 1+ f (φ), ξ(φ) = 0
and additional relation H = λ

√
F, where λ = const. The physical content of this relation is that the

non-minimal coupling of a scalar field and curvature F(φ) = 1 + δF(φ), otherwise the deviations from
Einstein gravity, induce the corresponding deviations of dynamics from a pure exponential expansion
H 6= λ and the deviations of the potential from the constant value V(φ) = 3λ2 + δV(φ) [70,95,96].

For the Hubble parameter H = λ + g(t), where g(t) is a some function of cosmic time,
from Equations (81)–(83) (with ξ(φ) = 0) one has the system of following dynamic equations [70,96]

F(t) =
(

1 +
g(t)

λ

)2

, (113)

V(φ(t)) =
1

λ2

[
3(g(t) + λ)4 + 6(g(t) + λ)2 ġ + ġ2 + (g(t) + λ)g̈

]
, (114)

ω(φ(t))φ̇2 = − 2
λ2

[
ġ2 + (g(t) + λ)g̈

]
. (115)

In the general case, one can obtain the exact cosmological solutions for different dynamics on the
basis of Equations (113)–(115) [70,95,96].

For the case of EPL dynamics with g(t) = m/t, where m is a some constant, the solutions of
Equations (113)–(115) can be written as [70]

V(φ) =
4

∑
k=0

Ck[Ψ(φ)]k, (116)

F(φ) =
2

∑
k=0

Ak[Ψ(φ)]k, (117)

ω(φ) = − 2
U(φ)

4

∑
k=3

Bk[Ψ(φ)]k, φ̇2 ≡ U(φ), (118)

t−1 ≡ Ψ(φ), (119)
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where Ψ(φ) is some function of a scalar field φ, and the constants Ak, Bk, Ck are

A0 = 1, A1 =
2m
λ

, A2 =
m2

λ2 ,

B3 =
2m
λ

, B4 =
3m2

λ2 ,

C0 = 3λ2, C1 = 12mλ, C2 = 6m(3m− 1),

C3 =
2m
λ

(6m2 − 6m + 1), C4 =
3m2

λ2 (m2 − 2m + 1).

In the paper [70] the exact solutions for EPL inflation with power-law and exponential potentials
were obtained, also the numerical analysis of the solutions for Higgs potential, Higgs–Starobinsky
potential, Coleman–Weinberg potential and quadratic potential for a massive scalar field were made.

Also, it was shown, that for parameter λ2 ∼ 10−12 such models will satisfy the observational
constraints (109)–(111) on the values of cosmological perturbation parameters. The power spectrum of
tensor perturbations (relic gravitational waves) on the crossing of the Hubble radius (k = aH) has a
constant value [70]

PT =
2λ2

π2 ≈
2

π2 × 10−12 = const, (120)

the corresponding spectral index nT = 0, and amplitude of relic gravitational waves AT = P1/2
T ≈√

2
π × 10−6.

We also note that in the paper [70] it was shown that cosmological models based on the quadratic
connection between the Hubble parameter and coupling function H = λ

√
F with exponential

power-law dynamics H(t) = m
t + λ correspond to observational constrains on the parameter of

cosmological perturbations for any potential of a scalar field and any expansion rate of the universe.

Reconstruction of STG Parameters from Physical Potentials

Due to the fact that the scalar field potential is of key importance for determining physical
processes at the stage of cosmological inflation, it is precisely the potential V(φ) that is specified for
constructing models of the early universe. The form of the scalar field potential is determined from
elementary particle physics, quantum field theory, theories of unifying fundamental interactions,
such as supersymmetric theories and string theories in the context of the inflationary paradigm.
We will call the potentials of a scalar field associated with these mechanisms as physical potentials.
Physical mechanisms corresponding to a large number of inflationary potentials were considered in
the reviews [97,98].

Now, we consider Ψ(φ) as the following function of some known physical potential

Ψ(φ) =

[
Vph(φ)

C4

]1/4

= t−1, C4 6= 0, m 6= 1, (121)

where Vph is some physical potential of a scalar field, and we exclude a special case C4 = 0 for m = 1.
Thus, from (116) we have the following exact expression for the potential

V(φ) = Vph(φ) +
C3

C3/4
4

V3/4
ph (φ) +

C2

C1/2
4

V1/2
ph (φ) +

C1

C1/4
4

V1/4
ph (φ) + C0, (122)
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For the case λ ∼ 10−6 and m� 1 one has

C3

C3/4
4

=
m(6m2 − 6m + 1)λ1/2

[m(m− 1)]3/2 ∼ 10−3, (123)

C2

C1/2
4

=
6(3m− 1)λ

m− 1
∼ 10−5, (124)

C1

C1/4
4

=
12mλ3/2

[m(m− 1)]1/2 ∼ 10−8, (125)

C0 = 3λ2 ∼ 10−12. (126)

For the coupling function (117) one has following exact expression

F(φ) = 1 +
A2

C1/2
4

V1/2
ph (φ) +

A1

C1/4
4

V1/4
ph (φ), (127)

for the case λ ∼ 10−6 and m� 1 we obtain

A2

C1/2
4

=
m

(m− 1)λ
∼ 106, (128)

A1

C1/4
4

=
2m

[λm(m− 1)]1/2 ∼ 103. (129)

The kinetic function (118) can be written as

ω(φ) = − 2
U(φ)

[
B4

C4
Vph(φ) +

B3

C3/4
4

V3/4
ph (φ)

]
, (130)

For the case λ ∼ 10−6 and m� 1 one has

B4

C4
=

3
(m− 1)2 ∼ m−2, (131)

B3

C3/4
4

=
2mλ1/2

[m(m− 1)]3/2 ∼ 10−3 ×m−2. (132)

Therefore, for this case the kinetic energy can be estimated as X = − 1
2 ω(φ)U(φ) = − 1

2 ω(φ)φ̇2 ∼
m−2Vph � Vph for m� 1. This result corresponds to the slow-roll condition for the predominance of
the potential energy of the scalar field over the kinetic one.

Now, we consider the procedure of reconstruction of the model’s parameters for a priori defined
physical potential Vph(φ). As the first example, we consider the potential for polynomial chaotic
inflation [97,98]

Vph(φ) = VP(φ) = V0φp, (133)

where p is an arbitrary constant.
From the Equation (121) we obtain the evolution of the scalar field

φ(t) = (βt)−4/p, β = (V0/C4)
1/4 . (134)

From the expression (134) one has the inverse dependence

t =
1
β

φ−p/4. (135)
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From the relation U(φ) = φ̇2 we obtain

U(φ) =

(
4
pt

)2
(βt)−8/p =

(
4

pβ

)2
φ

p
2 +2. (136)

The exact expressions for the potential, coupling and kinetic function is given by the
relations (122), (127) and (130).

By a similar way one can obtain the parameters of STG for the other physical potentials:

• Higgs potential

Vph(φ) = VH(φ) =
λH
4

(
φ2 − v2

)2
, (137)

φ(t) = ±
(

v2 +
1

β2
Ht2

)1/2

, (138)

βH =

(
λH
4C4

)1/4
, (139)

U(φ) =
β2

H
φ2

(
φ2 − v2

)3
, (140)

where λH is the Higgs coupling constant and v is the vacuum expectation value of the Higgs field.
• Higgs–Starobinsky potential

Vph(φ) = V0

(
1− e−

√
2
3 φ
)2

, (141)

φ(t) = −
√

6 ln

∣∣∣∣∣1− 1
β2

HSt2

∣∣∣∣∣ , (142)

βHS = (V0/C4)
1/4 , (143)

U(φ) = 6β2
HSe−

√
2
3 φ
(

1− e
√

2
3 φ
)3

. (144)

• Coleman–Weinberg potential

Vph(φ) = VCW(φ) = αφ4
(

ln
(

φ

vφ

)
− 1

4

)
+

α

4
v4

φ, (145)

φ(t) = vφ

[
1− (vφβCW t)−4

W
(
e−1[1− (vφβCW t)−4]

)]1/4

, (146)

βCW = (α/C4)
1/4 , (147)

U(φ) =
β2

CW

(
4
α VCW

)5/2

[
W
(

4
eα VCW −

v4
φ

e

)
+ 1
]2

W
(

4
eα VCW −

v4
φ

e

)
4
α VCW − v4

φ


3/2

, (148)

where W denotes the Lambert function.

Similarly, it is possible to reconstruct the evolution of the scalar field and the parameters of the
scalar-tensor gravity theory for other physical potentials.

The exact expression for the potential (122) corresponds to the considered physical potentials
with an accuracy of 10−3 for the case λ ∼ 10−6 and m� 1.
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Therefore, one can consider the potential of a scalar field as

V(φ) = Vph(φ) + small corrections, V(φ) ≈ Vph(φ), (149)

after neglecting the small terms of order O(10−3) and higher.
We also note that the terms in expressions (127) and (130) differ by three orders as well, therefore,

with the same accuracy after neglecting the terms of orderO(10−3), one can write the coupling and
kinetic functions in the following form

F(φ) ≈ 1 + 106 ×V1/2
ph (φ), (150)

ω(φ) ≈ −m−2 ×
(

Vph(φ)

U(φ)

)
. (151)

Thus, it is possible to reconstruct the parameters of the scalar-tensor gravity theory corresponding
to any potential of a scalar field for inflationary models under consideration.

8. Discussion

In this article, we have given a review of the methods for constructing and analysing models
of cosmological inflation with exponential-power dynamics based on Einstein gravity and some of
its modifications.

Firstly, we considered the exponential power-law inflation on the basis of the exact and
approximate cosmological solutions in the framework of General Relativity. The law of evolution of a
scalar field, its potential and the nature of the dynamics of the early universe were obtained. Based on
the results obtained, it can be argued that the Starobinsky and non-minimal Higgs models are the
partial cases of the exponential power-law inflation from a dynamically motivated point of view. On the
basis of exact solutions of the equations of cosmological dynamics in the Einstein frame, an expression
for Starobinsky f (R)-gravity with an additional term corresponding to the cosmological constant

f (R) = R +
1

6m2 R2 +
2
3

m2, (152)

was obtained. Also, it was shown that the pure exponential expansion of the early universe associated
with quadratic correction in curvature R2.

Secondly, we used the method of reduction of multifield Chiral Cosmological Models (CCM)
to the single field models on the basis of reducing target spaces with components of a metric tensor,
which are connected by conditions (60) and (61) for similar scalar fields. This method allows one to
generalise the solutions for EPL inflation with one scalar field on this class of CCM. It was also shown
that the parameters of cosmological perturbations in these models are calculated similarly to the case
of standard inflation models.

Thirdly, we generalise the solutions for EPL inflation on the case of generalised scalar-tensor
gravity with non-minimal coupling of a scalar field with the Ricci and Gauss–Bonnet scalars. For such
models one can obtain the parameters of these gravity theories from GR cosmological solutions.
The parameters of cosmological perturbations in these models are calculated similarly to the case of
standard inflation models for such models as well.

An analysis of the observational constraints on the values of the parameters of cosmological
perturbations suggests that exponential power-law inflation can satisfy any constraints on the value of
the tensor-to-scalar ratio obtained from the observational data.

Further, we considered the other class of cosmological models with quadratic connection between
Hubble parameter and function, which define the nature of the coupling of a scalar field and curvature.
General Relativistic limit in such models corresponds to de Sitter solutions only. The methods of exact
solutions and slow-roll one’s construction for such models were considered as well. Also we note that
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a distinctive feature of such models is that they correspond to observational constraints on the values
of the parameters of cosmological perturbations for any potential of the scalar field.

Finally, despite the fact that in this paper we considered only the case of exponential power-law
inflation, it is obvious that the proposed methods can be used to construct and analyse cosmological
solutions for any other dynamics of the early universe.
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