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Abstract—We consider cosmological models with a self-interacting scalar field and a perfect fluid with a
variable equation of state in spatially flat Friedmann-Robertson-Walker space-times. The main purpose
of the paper is a study of general thermodynamic properties of such models and their relationship with the
dynamics of geometry.
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1. INTRODUCTION

At present, there is great interest in cosmological
models with a variable matter equation of state in the
class of equations p = γ(t)ε (p is the fluid pressure
and ε its energy density). By now, methods allowing
for restoration of the quantity γ(t) from expressional
data have been developed [1], and an analysis of the
experimental data has been conducted to determine
this parameter as a function of cosmological time
(see [2] and references therein). However, in all
cited papers, the parameter γ(t) is calculated with
some reasoning which does not have a thermody-
namic nature but is rather reduced to some simple
parametrizations of the dependences γ = γ(t), as is
done, for instance, in [3–8]. On the other hand, the
thermodynamic meaning of the parameter γ(t) does
require a thermodynamic approach for a description
of its dynamics. The thermodynamic approach to the
description of dark energy and the related properties
of matter is at present under active discussion. The
thermodynamic properties of dark energy in the form
of a perfect fluid have been recently analyzed [9] for
different values of γ = const. Some thermodynamic
aspects of models with γ = γ(t) have been studied
in [10–12]. Actually, a thermodynamic approach to
model construction with γ = γ(t) has been developed
in [14] on the basis of a special representation of the
Einstein equations worked out in [13] for a spatially
flat Universe.

In [14], a two-component cosmological model
was studied, with a Friedmann-Robertson-Walker
(FRW) spatially flat metric and matter in the form of a
scalar field and a perfect fluid with a variable equation
of state of the general form p = γ(t)ε. The main idea
was to obtain such a scenario of the Universe devel-
opment, beginning with an inflationary stage, where

usual matter could emerge as a result of evolution
from a scalar field and quasivacuum which filled the
Universe from the very beginning. A transition of
some part of matter from a quintessence-like state
or dark energy to its usual form could be related to
a thermal equilibrium of the two forms of matter,
preserved at all stages. This would allow finding
an equation for the parameter γ(t) in an explicit
form from the equality requirement for temperatures
corresponding to the field and material components.
An analysis was conducted for a whole class of such
models, distinguished by a general condition on the
evolution of the total energy density W(φ(t)) of the
scalar field φ:

Ẇ = −kWα, (1)

where k and α are constants. In all such models
with 1 < α ≤ 3/2, the total field energy decreases by
a power law while the field self-interaction potential, if
matter is absent (i.e., for ε ≡ 0), has a form similar to
the Higgs potential and is determined by the relation
V (φ) = AφM −BφN with the exponents M,N > 2
(see [14]). The instant t = 0 in such models corre-
sponds to a cosmological singularity. As was shown,
in all such models the parameter γ(t) evolves in such
a way that lim

t→0
γ = −1 and lim

t→∞
γ = −1. That means

that always, irrespective of the initial conditions, the
Universe sooner or later should begin to expand with
acceleration while matter acquires the properties of a
quasivacuum (dark energy). In addition, such mod-
els inevitably contain an epoch dominated by matter
with the parameter γ ≥ 0. The importance of this
conclusion is that, on the one hand, it is this situ-
ation that corresponds to the existing picture of the
Universe evolution up to the present epoch; on the
other hand, this result need a minimum of material
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and mathematical ingredients for its foundation. This
makes such a class of models promising enough for
creating models which would also incorporate the
evolution of density perturbations. Models with a
variable equation of state at present seem to be most
adequate to be confronted to the experimental data. A
number of papers are devoted to analyzing methods
of verifying such models with the experimental data
and verification itself, see, e.g., [1, 2]. Therefore, in
the present paper, the class of models suggested pre-
viously is further generalized and modified to obtain
a more adequate representation of the real Universe
evolution.

We will here analyze a more general class of mod-
els for which the dynamics is determined in other
ways as compared to [14], i.e., based on the assump-
tion (1). We will suggest a method of specifying
the evolutionary characteristics by certain relations
involving the field φ or its total energy, to be called the
model with a master scalar field. We will give it in
a more general form and supply it with a more reliable
foundation than that given in [14]. This foundation
will rest on studying general thermodynamic conse-
quences of the equilibrium conjecture for the state of
matter at all stages of the Universe evolution. From
this analysis, we will derive other kinds of models
able to be considered in the framework of the present
approach.

2. BASIC ELEMENTS OF FIELD DYNAMICS
A starting point to an analysis of the models to

be considered are the standard Einstein equations for
a spatially flat FRW metric with a self-interacting
scalar field φ and a perfect fluid:

H2 =
κ

3

([
1
2
φ̇2 + V (φ)

]
+ ε

)
, (2)

φ̈+ 3Hφ̇ = − d

dφ
V (φ). (3)

Here, H = Ṙ/R is the Hubble parameter, R is the
scale factor, κ is the Einstein gravitational constant,
ε is the fluid energy density, and V (φ) is the self-
interaction potential of the field φ. The first is just
the Einstein equation while the second one is the φ
field equation. This set of equations is a basis for
analyzing the majority of cosmological scenarios in
the framework of the FRWmetric [15].

The above equations, in the analysis of inflationary
scenarios, are usually simplified by the slow-rolling
approximation [15]. It has been shown [13], however,
that, by introducing the total field energy potential,
Eqs. (2) and (3) are in a simple way converted to

H2 =
κ

3

(
W (φ) + ε

)
, (4)

3Hφ̇ = − d

dφ
W (φ), (5)

where, insted of the self-interaction potential V (φ),
one uses the total scalar field energyW (φ):

W (φ) = V (φ) +
1
2
φ̇2(φ) = V (φ) +

1
2
U2(φ). (6)

Here, we have denoted

φ̇ = U(φ). (7)

Since the model contains two components of matter,
the field and the fluid, one should supplement the
above equations with an equation for the fluid pres-
sure p:

p = − 1
æ

(
2
R̈

R
+
Ṙ2

R2

)
− 1

2
φ̇2 + V (φ), (8)

which is, generally speaking, a consequence of the
previous ones. This equation makes it possible to
convert the above equations to a more convenient
form using some simple transformations [13, 14]:

P = −W − 1√
3κ

Ẇ√
W + ε

, (9)

p = −ε− 1√
3κ

ε̇√
W + ε

, (10)

R = R0 exp
{√

κ/3
∫ √

W + εdt
}
. (11)

where the effective field pressure P has the standard
form

P =
1
2
U2(φ) − V (φ). (12)

A useful relation is also the one connecting the scalar
field and fluid parameters [13, 14]:

√
3κU

√
W (ϕ) + ε = −W ′. (13)

The importance of the representation constructed
here for the original equations (2), (3) (without mak-
ing any assumptions) is that Eqs. (4), (5) precisely
coincide with the slow-rolling equations, with the
only difference that it contains the total field energy
W (φ) instead of the self-interaction potential V (φ).
It means that all well-known conclusions concerning
the cosmological inflation theory may be attributed to
the exact equations (4), (5) with the only difference
that, instead of V (φ), the conclusions should be for-
mulated in terms ofW (φ).
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3. BASIC ELEMENTS OF THE MODEL
THERMODYNAMICS

Following [14], let us also write out the thermody-
namic relations to be used in what follows. Concern-
ing the non-field component of matter (i.e., fluid) with
the energy density ε, we will suppose that it evolves
in such a way that the following equation of state is
valid:

p = γ(t)ε, (14)

where p is the fluid pressure while the parameter
γ = γ(t) is a function of time. Such an equation of
state corresponds in a general form [14] to an effective
equation of state of a mixture of different components
of matter (dust, electromagnetic radiation etc.) with
different partial equations of state of the form

pj = γjεj , j = 1, 2, . . .

For the total pressure p =
∑

j pj of such amixture we
have

p =
∑

j

pj =
∑

j

γjεj =

∑
j γjεj∑
j εj

ε,

where ε is the total energy of the mixture: ε =
∑

j εj .
Comparing this relation with (14), we find

γ(t) =
∑

j

γjεj

/∑
j

εj .

In particular, for a mixture of dust and electromag-
netic radiation.

γ(t) =
1
3

εe(t)
εe(t) + εd(t)

,

where εe is the energy density of the isotropic radia-
tion and εd is that of dust.

As in [14], we will suppose that the parameters
of the fluid, considered as a material thermodynamic
object, satisfy the standard implications of the second
law of thermodynamics for equilibrium processes:

ε = −p+ T
∂p

∂T
, (15)

where T is the absolute temperature of the system
in thermodynamic (thermal) equilibrium. This equa-
tion follows from the requirement that for equilibrium
processes the matter entropy S should be a func-
tion of the system state parameters, in our case, the
temperature T and the volume V : S = S(T, V ). In
this case, Eq. (15) is obtained from the first law of
thermodynamics:

TdS = dU + pdV. (16)

Here, U is the internal energy of the system. In
principle, one could consider, by analogy with [9], a

more general case of a system with a variable particle
number, but then it would be necessary to supplement
the theory with considerations on how particle cre-
ation and destruction take place, thus substantially
modifying without any hope to obtain equally sub-
stantial results. Therefore we here do not consider
such an extension.

The relation (16) leads to the following expressions
for the derivatives of the entropy with respect to T and
V :
∂S

∂T
=

1
T

∂U
∂T
, σ =

∂S

∂V
=

1
T

[
∂U
∂V

+ p
]
. (17)

A consistency condition for this system is just given
by Eq. (15) where, by definition, one puts

ε =
∂U
∂V
.

The second equation in (17) gives a relationship be-
tween the entropy density σ and the energy density:

σ =
ε+ p
T

= (1 + γ)
ε

T
. (18)

Excluding the pressure p from Eq. (15) with the aid
of (10), we obtain:

d lnT
dt

=
√

3æ
√
W + ε+

d

dt
ln
[

ε̇√
3æ

√
W + ε

]
.

Using (11), this relation is reduced to a full time
derivative, which results in the entropy conservation
law which we write down in the form

T = CR3 ε̇√
3æ

√
W + ε

, (19)

where C is an integration constant. Using again (9),
(10), we can write the latter relation as an entropy
conservation law in an elementary volume of matter
in a standard form:

R3(1 + γ)
ε

T
≡ R3σ = − 1

C
= s0 = const. (20)

Here, s0 is the entropy of a comoving fluid volume.
From (19) one can make an important conclu-

sion: since, by definition, T > 0, R > 0 and s0 > 0,
it follows from (20) that, during the whole Universe
evolution in an equilibrium regime, the inequality ε̇ ≤
0 holds, i.e., the energy density of the material com-
ponent monotonically decreases. The energy density
can grow only if the thermodynamic equilibrium of the
system is violated.

4. MODELS WITH A MASTER FIELD

Let us note that the system (9)–(11) contains an
unspecified function. It is connected with the fact
that the self-interaction potential of the scalar field
is actually unknown. This inserts arbitrariness into
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the theory, and it is generally excluded using different
additional assumptions on the nature of evolution of
the φ field itself, the scale factor R or other parame-
ters of the system, which makes a basis for different
variants of the so-called potential fine tuning method.
One of such approaches is the one developed in [13,
14] (see also references therein). Other possible ways
of excluding the uncertainty in the system (9)–(11)
reduce to different ways of calculating the potential
from some other physical theories which also contain
a number of uncertainties of another nature.

Following [13, 14], let us consider a new variant
of the potential fine tuning method, to be called the
master field model. Master field models rest on two
hypotheses. The first of them consists in assuming
that the scalar field evolution is not connected locally
with changes in the scale factor an matter parame-
ters but is determined by internal causes of evolu-
tion of the field itself. Such an internal mechanism
could be, for instance, quantum dynamics of the field,
e.g., spontaneous decay of its quanta which, on the
average, should be described by a simple equation
characterizing a change in its total energy density
W . The second hypothesis, concerning the field ther-
modynamics, is formulated as follows. We note that
the field itself may be considered as an equilibrium
thermodynamic object. In other words, we can intro-
duce such a parameter Θ that the field parameters, its
effective pressureP and total energyW are connected
by a relation similar to (15):

W = −P + Θ
∂P
∂Θ
. (21)

The parameter Θ plays the role of an effective temper-
ature of the scalar field as a thermodynamic object.
This relation may be simply treated as a definition of
Θ. It can also be considered as an implication of an
analogue of the first law of thermodynamics (see the
Appendix) of the form

ΘdS = dW + PdV,
where S is the scalar field entropy. As in the case of a
perfect fluid, using Eqs. (9), (11), (21) and excluding
the effective pressure P, we obtain the scalar field
entropy conservation law

R3S = S0 = const. (22)

This law may be considered as an integral of mo-
tion for the scalar field in such models with two-
component matter. This law implies an expression foe
Θ similar to (19):

Θ = − 1
S0
R3 Ẇ√

3æ
√
W + ε

. (23)

Here, S0 is the conserved thermodynamic entropy of
the field φ. And since by the definition of the usual

scalar field

P +W = (φ̇)2 > 0,

it immediately follows from (9) that Ẇ < 0. This
inequality allows us to conclude from (23) that if the
constant S0 is chosen to be positive, then automat-
ically for all t we have Θ ≥ 0. Thus the variable Θ
is endowed with all properties of temperature (see
the Appendix). In this connection, the second hy-
pothesis consists in postulating that the scalar field
temperature Θ and the temperature of matter, T , are
equal: Θ = T , i.e., they are in effective temperature
equilibrium with each other.

Unifying these hypotheses, we obtain a theory
where the scalar field φ, evolving according to its in-
ternal laws, governs the whole system through ther-
mal equilibrium and thus ultimately governs dynam-
ics of the Universe expansion. Such a concept has
been considered in [14]. In the most general form, the
internal evolution equation for the scalar field may be
represented as follows:

Ẇ = −Q(W ) ≤ 0, (24)

where Q(W ) is a certain nonnegative function. The
form of this function determines different kinds of
models with a master field. In [14] only power laws,
Q(W ) = kWα ≥ 0 with 1 < α ≤ 3/2, have been
considered.

Construction of the dynamics in this approach re-
duces to the following. From the temperature equality
condition, comparing (19) and (23), we arrive at the
simple relation

ε̇ = Ẇ , (25)

whence

W (t) = ε(t) − ε∞, (26)

where ε∞ is an integration constant equal to the value
of ε(t) as t→ ∞. Then, due to the condition T ≥ 0,
the functions ε(t) andW (t) shouldmonotonically de-
crease. If now the fluid has the equation of state (14),
then for the parameter δ(t) = γ(t) + 1 from (10) we
obtain a simple relation useful for calculations:

δ = γ + 1 = − 1√
3κ

Ẇ

(ε∞ +W )
√

2W + ε∞
. (27)

For experimental data analysis [1, 2, 10], it is
convenient to represent the parameter δ as a function
of the Hubble parameter H . To do so, one can use
Eq. (2). With (24), the general relation for δ is
obtained in the following form:

δ = γ + 1 =
2κ
3

Q
(
3H2/κ

)
(3H2 − ε∞κ)H

. (28)
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Since we have assumed in the present model that
the φ field is evolving according to its own internal
laws, the function Q(W ) and consequently W (t) as
a solution to (24) should be known by the moment
when the parameter γ is calculated according to (27).
In this case we can describe the matter evolution
completely. In particular, from the requirement that
the total field energy is positive and is monotonically
decreasing it follows that, as t→ ∞, for all such
models

lim
t→∞

W =W∞ ≥ 0, lim
t→∞

Ẇ → 0,

and consequently if in the model ε∞ + 2W∞ > 0,
then

lim
t→∞

δ = 0, lim
t→∞

γ = −1.

Thus in all such models the Universe inevitably
reaches a de Sitter stage of accelerated expansion.
Then, there are three main variants of such acceler-
ated expansion. The first one

W∞ > 0, ε∞ = 0,

corresponds to the definition of quintessence [16].
The second one,

W∞ = 0, ε∞ > 0,

corresponds to dark energy in the form of quasivac-
uum, or cosmological constant.

The third one,
W∞ > 0, ε∞ > 0

is mixed: quintessence plus cosmological constant.
All threemodels differ in the admissible asymptotic

form of the self-interaction potential of the field φ and
the fluid mixture type. Thus if ε0 > 0, then the fluid
mixture must contain quasivacuum dark energy. In
all three types of models, the asymptotic behavior of
the Universe is the same: accelerated expansion.

Models in which limt→∞ δ = δ0 > 0 correspond to
different Friedmannian scenarios for which
W (t) → δ0t

−2, ε(t) → δ0t
−2, t→ ∞.

Models with δ < 0 refer to phantom fields.
In all other cases δ → ∞ as t→ ∞, which appears

to be of little interest according to to modern views.
So, the present approach leads to a sufficiently simple
classification of models having a physical meaning.

5. THE SELF-INTERACTION POTENTIAL

One more important aspect of the general prop-
erties of the models under consideration is the na-
ture of the scalar field self-interaction, determined by
the properties of the potential V (φ). This analysis
is also important enough from the viewpoint of the
restrictions that follow from the dominating energy

principle. The latter implies that the potential must
remain positive at all stages of the evolution. It
helps one to establish additional requirements on the
parameter choice for the models suggested. To this
end, let us consider the self-interaction potential for
models specified by the simple condition

Ẇ = −Q(W −W∞) = −k(W −W∞)α,
1 ≤ α < 3/2. (29)

where W∞ is the limiting value of W as t→ ∞:
W∞ = limt→∞W (t). For the case 1 < α < 3/2 and
W∞ = 0 such models have been considered in [14].
In the case α = 1, the self-interaction potential for a
model with ε ≡ 0was calculated in [13]. Aswas noted
in [13, 14] and in the introduction to the present paper,
the self-interaction potentials are in this case similar
in shape to the Higgs potential. These circumstances
play a certain role in fixing attention on the choice (29)
of the functionQ(W ) in the present paper.

Keeping in mind possible generalizations, con-
sider the problem of calculating the potential V (φ)
in the general case of two-component matter with an
arbitrary function Q(W ). Using Eqs. (6) and (12) as
well as (9) and (10), one can obtain in an explicit form
an equation for the total energy W (φ) and the self-
interaction potential V (φ) as functions of the field.
For an arbitrary function Q(W ) in (29), the equation
for the normalized total energy

w(φ) = (W (φ) −W∞)/(ε∞ + 2W∞)

may be written in the following form:

dw

dφ
= −(3κε0)1/4(2w + 1)1/4(Q(wε0))1/2. (30)

Here, ε0 = ε∞ + 2W∞. Accordingly, the expression
for v(φ) = V (φ)/ε0 will have the following general
form:

v(φ) = w(φ) − 1
2
√

3κε30

Q(ε0w)√
2w + 1

+ w0, (31)

where

w0 =
W∞

ε∞ + 2W∞
=
W∞
ε0

< 1.

As a boundary condition for Eq. (30), one can choose
the condition w′(0) = 0 meaning that an extremum
(minimum) of the total energy coincides with the zero
field value.

To choose Q(W ) in the form (29), 1 ≤ α ≤ 3/2,
we additionally introduce the variable χ = φ/φ0,
where

φ0 = (3κ)1/4ε
(2α−1)/4
0

√
k, 1 ≤ α ≤ 3/2.
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Fig. 1. The normalized total energyw(χ) (plot 5) and self-interaction potential v(χ) (plots 1-4) forα = 1, w0 = 1 and different
values of ν0: 1—ν0 = 1.0, 2—ν0 = 2.0, 3— ν0 = 3.0, 4—ν0 = 4.0.

For the case α = 1 to be further studied in detail, it is
useful to introduce the parameter ∆0

∆0 = k/
√

3κε0, (32)

which will play an important role in what follows. In
this case, φ0 =

√
∆0(3κε0)1/2. As a result, we obtain

the following equation for w(χ):

dw

dχ
= −(2w + 1)1/4wα/2, (33)

which does not contain parameters other than α.
For v(χ) we obtain the following equation:

v(χ) = w(χ) − ν0
wα(χ)√

2w(χ) + 1
+ w0, (34)

which contains, besides α, two more dimensionless
parameters w0 and ν0:

ν0 =
kε

α−3/2
0

2
√

3κ
.

For α = 1 we have ν0 = ∆0/2. An analysis shows
that the parameter ν0 is responsible for the depth
of minima of the function v(χ) and w0 for the self-
interaction potential values at these minima. For the
case α = 1, Fig. 1 presents plots ofw(χ) and v(χ) for
some values of the parameters ν0 and w0 = 0.

It is easy to see that at ν0 > 0 and w0 = 0 the self-
interaction potential has a range of negative values.
This violates that dominating energy condition if the
parameters of the Universe get into such a range. To
avoid this, it is necessary to choose the value of w0 in

a special way. For α = 1, the minima of the potential
are determined by a real solution of the equation

(2wm + 1)3 = ν2
0(1 + wm)2,

where wm is the full normalized field energy value at
the minimum. It follows that to fulfil the condition
V (φ) ≥ 0 for all φ the value of w0 should satisfy the
inequality

w0 > wm

(
ν

2/3
0

(1 + wm)1/3
− 1

)
.

6. DYNAMICS OF MODELS
WITH A MASTER FIELD AND 1 ≤ α ≤ 3/2

A solution of Eq. (29) may be written in the follow-
ing general form:

W (t) =

{
W0t

−m +W∞, 1 < α ≤ 3/2;
W0e

−kt +W∞, α = 1.
(35)

Here, m = (α− 1)−1 and W0 is an integration con-
stant. Other values of α lead to exotic models.

Using (35) and (26), we obtain:

ε(t) =

{
W0t

−m + ε∞ +W∞, 1 < α ≤ 3/2;
W0e

−kt + ε∞ +W∞, α = 1.

In what follows, it is convenient to introduce, instead
ofW0, the dimensionless parameter

ξ0 =W0/ε0.
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Using (27), we find an expression for δ:

δ(t)

=




mε
−1/2
0√
3κ

ξ0t
−m−1

(1 − w0 + ξ0t−m)
√

2ξ0t−m + 1
,

1 < α ≤ 3/2;
kε

−1/2
0√
3κ

ξ0e
−kt

(1 − w0 + ξ0e−kt)
√

2ξ0e−kt + 1
,

α = 1.
(36)

As a function of H , the parameter δ for these models
has the following form:

δ(t) =




2kκ1−α

3H
(3H2 − κW∞)α

(3H2 − κε∞)
,

1 < α ≤ 3/2;
2k
3H

(3H2 − κW∞)
(3H2 − κε∞)

,

α = 1.

(37)

Further we accordingly find

R(t)

=




R0 exp
{√

κ/3ε1/2
0

∫ √
2ξ0t−m + 1dt

}
,

1 < α ≤ 3/2;

R0 exp
{√

κ/3ε1/2
0

∫ √
2ξ0e−kt + 1dt

}
,

α = 1.
(38)

and

T (t) =




R3(t)mε1/2
0

s0
√

3æ
ξ0t

−m−1√
2ξ0t−m + 1

,

1 < α ≤ 3/2;
R3(t)kε1/2

0

s0
√

3æ
ξ0e

−kt

√
3æ
√

2ξ0e−kt + 1
,

α = 1.

(39)

7. ANALYSIS OF MODELS

7.1. End of Inflation

As was already pointed out, models with 1 < α <
3/2 have been considered in [14]. Although here
we have obtained exact analytic solutions for these
modes all their basic properties were revealed in the
cited paper. Let us therefore concentrate on themodel
with α = 1, comparing it, where necessary with mod-
els 1 < α < 3/2, to be called power-law models in
what follows.

Let us above all notice some features of the model
distinguishing it from models with 1 < α < 3/2.
First, as is easily seen from solutions for the scale
factor and other parameters, a cosmological singu-
larity at α = 1 is located at minus infinity in time,
t→ −∞. Unlike that, a cosmological singularity
at 1 < α < 3/2 is located at the point t = 0, where
where all energy parameters (except δ) turn to infinity.
Meanwhile, the model α = 1 has, like the power-law
models, a time interval which can be naturally called
inflation. The inflationary epoch (see Fig.) in this
model actually begins at t→ −∞ and ends some-
what near the instant at which δ has an extremum
(Fig. 2). More precisely the moment when inflation
terminates, as shown in [13, 14], may be related to
the moment when the velocity of sound in the matter
components becomes real, so that perturbations can
freely propagate in the Universe. Since the velocity
of sound squared, expressed in terms of the velocity
of light, is equal for a fluid to γ = δ − 1, termination
of inflation may be attributed to the moment of time
ti when c2ε = γ(ti) = 0. This moment may be found
by solving Eqs. (36) for the value δ = 1. For the field
component, the velocity of sound may be found from
Eq. (9). The corresponding relation has the form

C2
W = −1 +

1√
3κ

Q(W )√
2W + ε∞

×
[
d lnQ
dW

− 1
2W + ε∞

]
.

This expression is somewhat different from (36), and
consequently inflation ends, in general, at different
moments for the two components of matter. Let us
also note that a value of the effective parameter δW :
P = δWW , has the following form:

δW = −1 +
1√
3κ

Q(W )
W

√
2W + ε∞

.

It is easy to estimate that for α = 1, as t→ −∞,
and for 1 < α < 3/2 as t→ 0, the quantity C2

W be-
haves precisely as c2ε = γ(t), i.e., tends to −1. As
t→ ∞, we have

C2
W (∞) = −1 +

1√
3κε0

[
α− W∞

ε0

]
.

It is seen from this relation that the scalar field behav-
ior at large times may differ from that of the fluid for
which always γ(∞) = −1.

7.2. Radiation-Dominated Epoch

The instant t∗ when an extremum of δ is achieved
is calculated from the relation (36) and has the form

t∗ = −1
k

ln
[ ε0
W0

]
− ln c0, (40)
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Fig. 2. Evolution of the scale factor in the model α = 1, W0 = 1, ε0 = 0.5 for different k: 1—k = 1, 2—k = 2, 3— k = 3,
4—k = 4, 5—k = 5, 6—k = 6.
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where c0 =
[
1 +

√
5
]
/2 
 1.618.

The exremum value δ∗ = δ(t∗) itself is equal to

δ∗ = δ0
k√
3κε0

= δ0∆0, (41)

where δ0 is a numerical parameter:

δ0 =
c0

(c0 + 1)
√

2c0 + 1

 0.3.

Analyzing the behavior of the curve δ(t), one can con-
clude that the inflation time is basically determined

by the parameter k, i.e., the characteristic time τ of
φ field decrease by a factor of e: τ = 1/k.

According to the general modern views on the
Universe evolution, there was an epoch dominated
by radiation in the form of electromagnetic waves in
thermal equilibrium with the rest of matter. Domi-
nation of isotropic radiation means that the quantity
γr 
 1/3 while δ∗ should be maximally close to δr =
1 + γr = 4/3. From these considerations one can find
some estimates of the model parameters. From (41),
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Fig. 4. Temperature evolution in the model α = 1, W0 = 1, ε0 = 0.5 and different k (under the condition δ∗ > q0): 1—k = 1,
2—k = 2, 3—k = 3, 4—k = 4, 5—k = 5, 6—k = 6.
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Fig. 5. Temperature evolution in the model α = 1, W0 = 1, ε0 = 20.5 and different k: 1—k = 1, 2—k = 2, 3—k = 3, 4—
k = 4, 5—k = 5, 6—k = 6.

assuming δ∗ = 4/3, we find

∆0 =
k√
3κε0

= 4/(3δ0)

=
(c0 + 1)

√
2c0 + 1

3c0

 4.4 > 1. (42)

Hence we obtain an estimate for k:

k
∣∣∣
δ∗=1/3

= 4.4
(c0 + 1)

√
2c0 + 1

3c0

√
3κε0

= 4.4 ·
√

3κε0. (43)

7.3. The Modern Epoch

One of the most important new elements that
appear in the model with α = 1 as compared with
the power-law models is a different behavior of the
temperature as t→ ∞. As was shown in [14] on the
basis of an asymptotic analysis, and in the present
paper follows directly from the exact relations (38)
and (39), the temperature in models with 1 < α <
3/2 asymptotically grows for ε0 > 0 exponentially due
to an exponential growth of the scale factor. The
power-law decrease of the energy parameters cannot
prevent this growth. Unlike that, in the case α =
1, the models split into three classes. As is easily
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seen from the relations (38) and (39), at α = 1 the
asymptotic behavior of the temperature as t→ ∞ is
determined by the exponential factor with the expo-
nent λ =

√
3κε0 − k. Hence it follows that for λ >

0, which is equivalent to
√

3κε0 > k or ∆0 < 1, the
temperature exponentially grows along with the scale
factor. In the case λ < 0 or ∆0 > 1, the temperature
exponentially decreases as t→ ∞, and for λ = 0 or
∆0 = 1 it tends to a constant value T∞:

T∞ =
R3

0kξ0ε
1/2
0

s0
√

3æ
.

Following the estimate (42), we see that the tem-
perature decrease as t→ ∞ just corresponds to the
condition δ∗ > 1/3. In other words, the temperature
in these models will decrease with time if the Universe
has undergone an epoch when γ∗ = δ∗ − 1 > −2/3.
Otherwise the temperature in it would have grown
exponentially. Passing of the Universe through a
radiation-dominated epoch is an indicator of a sub-
sequent temperature decrease in the modern epoch.

Different types of temperature behavior are pre-
sented in Figs. 4 and 5. Fig. 4 presents the time
dependence of the temperature for the case ∆0 >
1 at different values of k corresponding to this re-
quirement. Fig. 5 illustrates the temperature behavior
for the value k = 1, such that the condition ∆0 < 1
holds, while for k = 2 we have ∆0 
 1. For other
values of k, the parameter ∆0 > 1.

8. CONCLUSION

The above analysis makes it possible to come to
the following conclusions. First, the models pre-
sented a master field presented here, in the zero order,
describe the behavior of the basic parameters of the
Universe agreeing with the modern data, at least for
the considered types of evolution of the master scalar
field total energy. For a more detailed analysis, it is
necessary to consider the evolution of density pertur-
bations in such models for two-component matter,
field + fluid. Second, the method of model analysis
described here and the explicit relations obtained al-
low for analyzing models with any decrease rate of
the scalar field energy, including also different types
with an exponentially decreasing energy. Third, the
models presented can easily be classified according
to the matter type that provides the modern acceler-
ated expansion. This can be done from the type of
asymptotic behavior of the total energy of the whole
matter, i.e., field and fluid. Fourth, an analysis of these
models shows that to provide the observed decrease in
the mean temperature of matter in the Universe it is
necessary to have an exponential regime of the field
energy decrease, at least, in the modern epoch. The

latter means that the self-interaction potential must
have a shape close to that of the Higgs potential.

As a whole, one can assert that the models pre-
sented make it possible to take into account the data
on the Universe expansion in a sufficiently flexible
manner and thus improve the model parameters. A
distinctive feature of the models studied here and
in [14] is that, unlike the Standard model, the temper-
ature here grows during the inflationary period from
zero to a certain maximum value, and the moment
when it is reached actually coincides with the end of
inflation. Such a behavior appears to be quite logical if
one takes into account that there is no normal matter
during inflation. This distinction requires a further
study from the viewpoint of evolution of perturbation
spectra in this period, which may answer the question
of a realistic nature of these scenarios.

Appendix

THERMODYNAMIC PARAMETERS
OF THE SCALAR FIELD

To justify the possible interpretation of the effective
thermodynamic parameters of the scalar field intro-
duced in this paper as real thermodynamic parameters
of the system, let us show that these parameters
can be related to statistical parameters of scalar field
fluctuations in the framework of the model under con-
sideration.

Let us present the scalar field φ as an expansion,
φ = Φ + φ′, where Φ = Φ(t) is the ensemble mean
value of the scalar field, Φ = 〈φ〉, and φ′ is the field
fluctuation with a zero expectation value, 〈φ′〉 = 0.
Here and henceforth the angular brackets 〈〉 denote
ensemble averaging. The mean value E of the field
energy density and that of its effective pressure, P ,
can in this case be represented as follows:

E = 〈E(Φ + φ′)〉 =
1
2
Φ̇2 + E(Φ)

+
1
2
〈φ̇′2〉 +

∞∑
k=1

1
k!
dkE(Φ)
dΦk

〈φ′k〉, (A.1)

P = 〈P (Φ + φ′)〉 =
1
2
Φ̇2 − E(Φ)

+
1
2
〈φ̇′2〉 −

∞∑
k=1

1
k!
dkE(Φ)
dΦk

〈φ′k〉. (A.2)

The first of these relations may be considered as an in-
tegrated analogue of the first law of thermodynamics
for the scalar field:

∆E = ∆W + ∆A (A.3)
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The increment of the total field energy in the vol-
ume V splits into two components: ∆A, the work
that changes the energy of the mean field and the
increment of the field internal energy (the fluctuation
energy):

U =
1
2
〈φ̇′2〉 +

∞∑
k=1

1
k!
dkE(Φ)
dΦk

〈φ′k〉.

Therefore the system may be ascribed an entropy S
and a temperature Θ. This may be done by directly
representing the total field energy increment in the
volume V in the form

∆E = Θ dS.
Or, otherwise, one can do that directly from the
equation of state P = F (E) which directly follows
from (A.1) and (A.2) since all functions involved in
these equations are only functions of time. It is
well known that if the processes are required to be
reversible, we have two relations for the entropy:

Θ
∂S
∂Θ

=
∂W
∂Θ

,

Θ
∂S
∂V

=
∂W
∂V

+ P = E + P . (A.4)

These two relations, provided there is an equation of
state, make it possible to introduce both the entropy S
and the temperature Θ. Hence we obtain the relation

E =
dU

dV
= −P + Θ

dP

dΘ
.

It is this relation that was used in the paper, with
the difference that we kept in mind the ensemble

averaged values of the system parameters under the
identifications P = P andW = E..
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11. N.Bilič, ArXiv: 0812.5050.
12. E. N. Saridakis, P. F. González-Dı́az, and
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