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The dust disk dynamis in week-nonlinear regimeVitor M. Zhuravlev, Alexander V. PatrushevUlyanovsk State Universityzhuravl�sv.ulsu.ruWe investigate the problem of self-gravitating dust disk dynamis in a stati state taking intoaount nonlinear effets. For this purpose Shr�odinger-type equation inluding the mass onser-vation law is used for the whole desription of hydrodynami flows of self-gravitating dust. Wehave shown a purely hydrodynami mehanism of ring formation in the radial diretion by takinginto aount nonlinearity in the lowest order of expansion parameter, whih determines an order ofmagnitude of flow.1 IntrodutionSelf-gravitating systems are of great interest for investigation in astrophysisbeause of their widespread appearane [1, 2, 3℄. Suh systems are diffiultfor analytial analysis when we onsider a lot of fators, and therefore thestandard way of analysis is in the terms of density perturbations. As a resultthe problem may be entirely linearized, and it failitates analysis, but in thisway one annot entirely investigate some speifi effets aused by nonlineardynamis of suh systems. In this paper the problem is also onsidered interms of perturbation theory, but it is possible to take into aount nonlineareffets of dynamis in the lowest order by means of elimination of seular intime expansion terms. Shr�odinger-type equation1 representing ombined de-sription of Euler fluid dynamis together with the ontinuity equation is used1Of ourse we onsider this equation only as auxiliary one without Plank's onstant and any "quantumsense". 1
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for determination of potential hydrodynami flow. Dynamis of rather outly-ing disk regions is disussed. These regions are situated far from the entralmassive objet and the disk surfae. Internal boundaries of these regions arepredetermined by ongruene ondition of the self-gravitating dust potentialand the ompat body potential. The main aim of this paper is to onsider aring struture formation due to nonlinear hydrodynami flow of self-gravitatingdust. The internal region dynamis nearby the entral objet and the disk sur-fae must be onsidered as the internal solution problem similarly to boundarylayers problem.2 The usage of Shr�odinger-type equation in Euler fluiddynamisLet us onsider Shr�odinger-type equation:
iΨt + α(t)∆Ψ − U(x, t)Ψ = 0. (1)Here Ψ is a dimensionless omplex wave funtion, i is an imaginary unit, α =

α(t) is a ertain dimensionless real funtion of time t, U(x, t) is a real potential-like energy funtion, ∆ is three-dimensional Laplaian.Besides the (1) it is neessary to onsider the omplex onjugate equation:
−iΨ∗

t + α(t)∆Ψ∗ − U(x, t)Ψ∗ = 0.Multiplying the previous equation by Ψ and (1) by Ψ∗, and subtrating theseond expression from the first one, we get
∂

∂t
|Ψ|2 + div

(

iα|Ψ|2∇lnΘ
)

= 0, (2)where Θ = Ψ∗/Ψ. Dividing (1) and the onjugate equation by Ψ and Ψ∗orrespondingly, and summing these expressions gives
i
∂

∂t
lnΘ + α

∆Ψ

Ψ
+ α

∆Ψ∗

Ψ∗
− 2U = 0. (3)2



(2) an be interpreted as differential onservation law for density |Ψ|2 of fluidmoving with the veloity v = iα∇lnΘ.For an arbitrary Euler flow v we have the following identity:
vt + (v,∇)v ≡

1

2
∇|v|2 + [v × rotv] + vt. (4)Note that in our ase the field v is potential: rotv = 0. For analysis of right-hand side of (4) one an use (3). As a result it follows the identity

vt +
1

2
∇|v|2 = α2∇



−2
∆|Ψ|

|Ψ|



 + 2α∇U +
α̇

α
v.This result through identity (4) an be ombined into the following Euler'sequation for the flow v

vt + (v,∇)v = α∇



−2α
∆|Ψ|

|Ψ|
+ 2U



 + κv, (5)where κ = −α̇/α = κ(t) is a oeffiient of a linear frition as it is alled in fluiddynamis. Corresponding fritional fore in the system −κv an be regardedas a result of ollisions between dust partiles. In fat, this rather simplistiapproah doesn't give an exat piture. Nevertheless, it allows to estimate theinfluene of a dissipation on a stationary dust distribution. Below we disussthe ase κ = κ0 = const. Dependene κ on time an be interpreted as partilesinteration to be hanged in time, e. g. due to inreasing partiles in size .Consider fore per unit mass in the momentum equation in details. One ansee from (5) the fore is potential. In real fluid dynamis, however, right handside in Euler equation in the presene of the field of a potential fore is thefollowing
F = −

1

ρ
∇P −∇φ, (6)where ρ is density of fluid or gas , P is pressure, φ is potential of fore per unitmass is onsidered below to be Newtonian fore. We investigate dust objets in3



this paper. And the state equation for dust is well known as p = 0. Therefore,fore per unit mass (6) onsists of dust self-gravitation and it may inludegravitation fore from a massive objet, whih is nearby the dust. Then wefind the relation between Euler fluid dynamis and Shr�odinger-type equation
− 2α2∆|Ψ|

|Ψ|
+ 2αU = −φ. (7)3 The hydrodynami equations for self-gravitating dustThe problem onsidered in this paper an be formulated in the following way.We investigate dust objets having the equation of state P = 0. And dust is inself-gravitation in terms of Euler fluid dynamis. So, we ome to the system ofequations for self-gravitating objets dynamis, whih onsists of Shr�odinger-type equation (1), the onordane equation and the Poisson one, whih is:

∆φ = 4πG(ρ0|Ψ|2 + σδ(z) + M0δ(r)), (8)where ρ0 - a harateristi density suh that the funtion of density is
ρ = ρ0|Ψ|2.The seond z-diretion δ-like soure item in right hand side of the equationfor potential desribes a matter originally onentrated in thin disk with surfaedensity σ = σ(x, y, t), where x, y are Cartesian oordinates at the disk surfae.Now we shall make a nondimensionalization as following:

r̃ = r/R0, τ = t/T0, Φ = φ/φ0.And make a notion : α(τ) = α0f(τ), where
f(τ) = exp { −

τ
∫

0

κ(τ ′)dτ ′}4



is a dimensionless funtion of time. The system of equations then reads
iΨτ + εf(τ)∆̃Ψ − WΨ = 0, (9)
−2ε2f 2(τ)

∆̃|Ψ|

|Ψ|
+ 2εf(τ)W = −

φ0T
2
0

R2
0

Φ, (10)
∆̃Φ =

4πGρ0R
2
0

φ0
|Ψ|2, (11)where ε = T0α0/R

2
0 - is the dimensionless harateristi parameter, estimatingan order of magnitude of the dimensionless flow in the system:

V = iεf(τ)
∂

∂r̃
lnΘ,

W = UT0 is the non-dimensional olletive potential.Below we omit ,̃ implying the equations to be written in a dimensionlessform.In this paper we are interested in ases suh that ε << 1 is a small param-eter, i.e. the veloity of flow is small and the system in a gravitation field isabout equilibrium .Researhing of (9)-(11) shows that for the equations to desribe non-trivialsituation we must use the onditions as follows:
φ0T

2
0

R2
0

= ε,
4πGρ0R

2
0

φ0
= µ = O(1),where µ is the first-order onstant to ε. From this it follows φ0 =

εR2
0/T

2
0 , ρ0 = εµ/(4πGT 2

0 ), i.e. the dust density and the self gravitationalpotential are small and have the same order with respet to ε.4 Approximate equationsLet us seek the solutions as power series in ε:
Ψ = Ψ0 +

∞
∑

n=1

εnΨn, Φ = Φ0 +
∞
∑

n=1

εnΦn, W = W0 +
∞
∑

n=1

εnWn.5



Sine small parameter ε in (9) and (10) is at the derivative of higher order,we an expet boundary layers in the system to appear. They ould exist inthe enter of the field and at the surfae of the disk. This boundary layers areonneted with nonlinear mode not with visosity. Outside of this boundarylayers, i.e. far from the field enter and the disk surfae we use ordinary axialoordinate z. Nearby the disk surfae we must use oordinate Z = z/ε. Note,
δ-like soure in (11) must be taken in aount only in internal solution.For external region we have the system of equations by substituting theexpansions in equations in two first orders :

iΨ0,τ = W0Ψ0; 2f(τ)W0 = −Φ0; ∆Φ0 = µ|Ψ0|
2; (12)

iΨ1,τ = W0Ψ1 + W1Ψ0 − ∆Ψ0,

−2f 2(τ)
∆|Ψ0|

|Ψ0|
+ 2f(τ)U1 = Φ1, ∆Φ1 = µ(Ψ∗

0Ψ1 + Ψ∗
1Ψ0). (13)Suppose the flow and the gravitational field in lowest order are stationary; thenwe have solution in this order:

Ψ0 = C0(r) exp
{

−i
∫

W0(r, τ)dτ
}

, W0 = −
1

2f(τ)
Φ0,where funtion Φ0 is to be obtained from the Poisson equation:

∆Φ0 = µ|C0|
2. (14)After some simple manipulations, we arrive at the following solutions at thefirst order :

Ψ1 = C1(r)e
−iχ(r,τ) − ie−iχ(r,τ)

τ
∫

0

[

W1(r, τ
′)C0(r) − eiχ(r,τ ′)f(τ ′)∆Ψ0

]

dτ ′,

W1 = −
1

2f(τ)
Φ1 + f(τ)

∆|C0|

|C0|
.Here

χ(r, τ) =
∫

W0(r, τ)dτ6



Substituting these expressions in the equation for Φ1 (13)we get:
∆Φ1 = µ(C0C

∗
1 + C1C

∗
0) + iµ[C∗

0∆C0 − C∗
0∆C0]Q(τ) − µH(τ)∇

(

|C0|
2∇Φ0

)

.(15)Here
Q(τ) =

τ
∫

0

f(τ ′)dτ ′, H(τ) =
τ

∫

0

τ ′

∫

0

dτ ′′

f(τ ′′)
f(τ ′)dτ ′,If κ = κ0 = const then

Q(τ) =
1

κ0
(1 − e−κ0τ ), H(τ) = τ

1

κ0
−

1

κ2
0

(1 − e−κ0τ ).One an see that Q(τ) deays exponentially to a onstant, whereas H(τ) in-reases linearly with time, i.e. orresponding omponent is seular, and forstable solution it should beome zero. Hene, we ome to the following: takinginto aount (14), funtions C0(r) and W0(r) must obey the equations suhthat
∇

(

|C0|
2∇Φ0

)

= 0, (16)
∆Φ0 =

µ

2
|C0|

2. (17)Then equation (15) redues to
∆Φ1 = µ(C0C

∗
1 + C1C

∗
0) +

2µ

κ0
div[|C0|

2∇Θ0]
(

1 − e−κ0τ
)

, (18)where C1(r) an be obtained from stationary ondition at the next order ofexpansion , and Θ0 = (i/2)ln(C∗
0/C0) - is still an arbitrary funtion. Thesolution for W1 follows from the first equation in (13).The interpretation of obtained equations follows from the expression for theflow veloity in the first order

V1 = v1 + v2, v1 = ε∇Φ0, v2 = 2εf(τ)∇Θ0(r) = 2εe−κ0τ∇Θ0(r).7



Right hand member in (15) is determined by the soure of mass, whih isassoiated with the seond flow in the system. This flow tends to a fixed spaedistribution as τ → ∞. Equation (16) is the law of onservation of mass forthe flow v1. Suppose soures of mass do not exist; then the seond addend inright hand side of (15) beomes zero
div[|C0|

2∇Θ0] = 0. (19)If not, we must expliitly write down the soure of mass by means of join ofexternal and internal solution. The first flow is stationary and it is assoiated infirst order with stationary fall in the field Φ0. Existene of dissipation leads tofall of partiles with the fixed veloity v1 instead of falling with the aeleration
g = −∇Φ0.5 Axial-symmetri solutionsOur aim is to onsider models with axial symmetry. Take ylindrial polaroordinates r, z, ϕ implying dependene funtions of the system on r and z

Φ0(r, z) = u(r)h(z), R(r, z) = p(r)h(z).Thus one an find the following equations for u(r), p(r), h(z):
u′′

u
+

1

r

u′

u
+

h′′

h
=

µ

2

p

u
,

u′

u

p′

p
+

(h′)2

h2
+

µ

2

p

u
= 0.Separation of variables implies

h(z) = h0e
−λz.We should suppose dust density and potential to deay while moving offthe disk in the line of z → +∞ as well as z → −∞. Thus if λ > 0, we have

h(z) = h0e
−λ|z| far from the disk surfae z = 0.8



So we obtain equations for u and p

u′′ +
1

r
u′ + λ2u =

µ

2
p, (20)

u′

u

p′

p
+ λ2 +

µ

2

p

u
= 0. (21)Let us seek the solution for p as: p(r) = q(r)u′(r). Substituting p in aboveform into equation (21) and using (20) yield

q′ −
1

r
q + µq2 = 0.This equation is easy to solve and general solution is

q(r) =
2

µ

r

r2 + Q0
,here Q0 - integral onstant. Finally we get

p(r) =
2

µ

r

r2 + Q0
u′(r), (22)where u(r) now follows the equation

u′′ +
Q0

r(r2 + Q0)
u′ + λ2u = 0. (23)Funtion p(r) follows, orrespondingly, the equation

p′′ +
2r2 − Q0

r(r2 + Q0)
p′ + λ2p = 0. (24)At small Q or large r the equation for u(r) is similar to osillation equationwith wave number λ and, hene, u(r) hanges the sign quasi-periodially aswell as its derivative.So we an establish behavior of dust distribution. The definition of p(r)implies p(r) > 0. The density beomes zero together with the gradient of9



potential aording to (22). Thus it follows that disk is partitioned on ringswhih are separated by thin gaps. Analysis of equations for flow shows that dustfrom ertain ring does not penetrate the bounders. The gradients of potentialin adjaent rings, however, have unlike signs due to its quasi-periodi behavior.But if we require ontinuity of density and its derivative at boundary points,we immediately obtain that density must attain a negative value along with
u′. Therefore, the derivative of density has disontinuity at boundaries of ringsand in eah ring with onstant sign of u′ we should hoose the sign and themagnitude of Q to satisfy requirement p(r) > 0.Generally boundary onditions for alulation of ring parameters ome toontinuity of potential and its derivative at ring boundaries (seond derivativeis disontinuous). It follows from equality of fores operating at disk boundaries.Let ri, i = 1, 2 . . . be boundary points in whih u′|ri

= 0. Then equationsfor our model are:
u′′

j +
Qj

r(r2 + Qj)
u′

j + λ2
juj = 0, r ∈ [rj, rj+1]with boundary onditions

u′
j(rj) = 0, u′

j(rj+1) = 0,

uj−1(rj) = uj(rj), uj+1(rj+1) = uj(rj+1),

πµ

rj+1
∫

rj

r2

(r2 + Qj)
u′

j(r)dr = σj.Here σj is a onstant surfae density in j ring.
10
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Fig.1. 1 - potential u(r) , 2 - density p(r). Ring parameters : λ = 1,
µ = 2, Q0 = 10, Q1 = −19.85, Q2 = −19.7, Q3 = −155, Q4 = −108.Figure 1 illustrates the different possible solutions satisfying the boundaryonditions.6 DisussionWe have investigated the formation of rings with too narrow gaps betweenthem as t → ∞. And the width of gaps are onsiderably smaller then diskrings one. The masses of rings and distribution of density are determined by11



the oeffiient Q, that an be unique for eah ring. Obtained solutions an beassoiated with dust distribution in real disk systems. However, to desribesystems like internal Saturn's rings we must use other methods beause ourapproah is not suitable for internal regions. Radial orbital flow indued bythe entral mass is the main omponent of dynamis for internal rings. Nearbythe planet the radial veloity is great but we assume the mehanism of ringformation to be the same and it an be modified by orretions onneted withthe main orbital flow. And it will be the objet of another paper.Referenes[1℄ Fridman, A. M. and Polyahenko, V. L. (1984) Physis of GravitatingSystems, Vols 1 and 2. Springer, New York.[2℄ Hubert Klahr and D. N. C. Lin IdentifiersDust Distribution in Gas Disks.II. Self-indued Ring Formation through a Clumping Instability ApJ,2005,632,1113.[3℄ James R.Graham, Astrophysial Gas Dynamis.http://astron.berkeley.edu/∼jrg/ay202/
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